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N E T W O R K  S C I E N C E

Emergence of simple and complex contagion dynamics 
from weighted belief networks
Rachith Aiyappa*, Alessandro Flammini, Yong-Yeol Ahn

Social contagion is a ubiquitous and fundamental process that drives individual and social changes. Although 
social contagion arises as a result of cognitive processes and biases, the integration of cognitive mechanisms 
with the theory of social contagion remains an open challenge. In particular, studies on social phenomena usu-
ally assume contagion dynamics to be either simple or complex, rather than allowing it to emerge from cognitive 
mechanisms, despite empirical evidence indicating that a social system can exhibit a spectrum of contagion 
dynamics—from simple to complex—simultaneously. Here, we propose a model of interacting beliefs, from 
which both simple and complex contagion dynamics can organically arise. Our model also elucidates how a 
fundamental mechanism of complex contagion—resistance—can come about from cognitive mechanisms.

INTRODUCTION
From the spreading of infectious diseases to the diffusion of ideas, 
innovations, beliefs, and behaviors, social contagion is a fundamen-
tal social dynamic that drives large-scale changes in societies (1–5). 
It is at the heart of numerous social challenges that our society is 
facing (6), including the prevalence of false information (7), politi-
cal polarization (8, 9), climate change denial (10), and vaccine hesi-
tancy (11, 12). These challenges are tied to the deluge of information 
being exchanged in the modern world, particularly via social media, 
that offers frictionless conduits for any kind of information to spread 
globally. This accelerated spread and efficient discovery process may 
be exacerbating our cognitive biases and flawed cognitive decision-
making system (13, 14).

Various cognitive biases come into play when people encounter 
new information and decide to share it or not (15, 16). Although 
they may often be useful heuristics and shortcuts, cognitive biases 
like confirmation bias (17) can also lead us to discard or misinter-
pret facts and evidence, especially when it is complex or contradic-
tory to our existing beliefs (18). This tendency can thus aggravate 
the polarization and spread of false information in society.

On the modeling side, the dynamics of social contagion are typi-
cally studied with a social network where a “susceptible” node may 
be infected by “infected” neighbors, and where the likelihood of 
such an event is usually assumed to be a function of the number of 
exposures. The function that determines contagion dynamics falls 
into two broad classes—simple and complex contagion (19–25). 
Although stringent and universally agreed-upon definitions of sim-
ple and complex contagion have not yet been established in the 
literature, the difference can be explained with representative 
examples. An illustrative example of simple contagion is the infec-
tion process in the SIR model (3), or the independent cascade mod-
el (26), where each infected neighbor contributes independently 
to the probability of infection of a target node. This leads to a con-
cave shape of the infection probability curve—probability of infection 
versus the number/fraction of infected nodes (see Fig.  1A)—
characterized therefore by diminishing returns with respect to an 
increasing number of infected neighbors. By contrast, in complex 

contagion, the contribution of the infected neighbors is not inde-
pendent anymore and the social reinforcement becomes critical. 
Namely, when there is little (not enough) exposure, the probability 
of adoption remains low; however, as we cross the threshold 
of adoption, the probability increases markedly, producing an 
S-shaped adoption curve (see Fig. 1A) (19, 26–28), that is often 
approximated with a step function (27, 28). Rather than depending 
on the specific knowledge of the infection mechanisms [which may 
be difficult to acquire in many application settings (29)], for the sake 
of the present paper, we will use the shape of the infection curve as a 
discriminating factor between simple and complex contagion.

These two classes of dynamics reflect distinct characteristics of 
contagion, such as the adoption of costly behaviors (e.g., a healthy 
diet) versus cheap ones (e.g., rumor), and have profound implica-
tions on the patterns of spreading and how such spreading depends 
on the social network structure (19, 20, 30, 31). For instance, it has 
been shown that, although inter-community mixing unilaterally 
facilitates simple contagion (22, 32), complex contagion can both be 
facilitated and inhibited by inter-community mixing (33), exhibit-
ing a more nuanced behavior (31).

Many models of contagion have been proposed to account for 
the phenomena like polarization and consensus formation (34). 
However, social contagion models rarely consider the psychological/
cognitive basis of social contagion. Instead of starting from cogni-
tive mechanisms to derive contagion dynamics, studies assume dy-
namics and do not account for complex belief interactions within 
individuals, although these interactions could be integral to social 
contagion and responsible for counterintuitive phenomena (35–37). 
A wide gap still exists between models of cognitive processes and 
models of social contagion (38), although the effect of the human 
predisposition to have a coherent set of beliefs (39) on social conta-
gion has been of recent interest (40–44). In particular, it would be 
highly desirable to have a theoretical model that bridges the gap and 
derives the emergence of both complex and simple contagion and, 
possibly, a range of observed intermediate behaviors (23) from the 
same theoretical framework.

Here, we propose a belief dynamics model that couples the cog-
nitive tendency toward internal coherence with social contagion 
theory. Our model builds on recent work that models the internal 
belief system as an undirected, unweighted network of semantic 
concepts (45). We introduce the strength of beliefs and natural 
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dynamics that account for the tendency to have a coherent set of 
beliefs and to align beliefs with those of the people one interacts 
with. We show that, depending on the context in which beliefs exist, 
both simple and complex contagion dynamics emerge organically 
from the dynamics of the belief network.

Interacting weighted beliefs model
Consider a social network of N nodes and M edges. Each node rep-
resents an individual (i) and each edge represents a social relation-
ship through which (the strength of) beliefs are exchanged. Each 
individual’s belief system is described via another network—the be-
lief network, Bi. In the belief network, nodes represent entities (e.g., 
Roger Federer and London), concepts (e.g., vaccinations and abor-
tion rights), or notions (e.g., good and dangerous). For the sake 
of simplicity, here, we abstract out and ignore these differences, 
although in principle different types of nodes can be explicitly 
modeled. The edge between a pair of nodes represents, from an 
individual’s perspective, how coherent (or mutually exclusive) are 
the notions of the corresponding nodes. We refer to edges as “be-
liefs,” denoted by b. A belief is therefore represented by an undi-
rected weighted edge, where the sign reflects the belief ’s polarity 
and the weight (ranging in [−1, 1]) represents the strength of the 
belief (see Fig. 1B). In our model, beliefs change as a consequence 
of social interactions and because of the predisposition to hold a 
coherent set of beliefs (39).

Let us illustrate the notion of the belief network and dissonance/
coherence with a toy example about a fictional agent, Bob. Bob 
is an avid follower of tennis, who detests match-fixing. Roger 
Federer has been his favorite tennis player for a long time. Thus, 
in Bob’s belief network, there is a positive link between Federer 
and Bob (reflecting his affinity to Federer) and a negative link be-
tween match-fixing and Bob. There is also a negative link between 
Federer and match-fixing (indicating Bob’s belief that Federer is 
not involved in any match-fixing). Now consider a hypothetical 
situation in which Federer has been accused of match-fixing. This 
is reflected in a positive link between Federer and match-fixing in 
the belief system of some of Bob’s neighbors in his social network, 
whose influence can potentially change Bob’s belief system. Note 
that the information from the neighbors is not congruent with 
Bob’s current belief system. Bob’s affinity for Federer and dislike of 
match-fixing cannot be easily reconciled with the fact that Federer 
may have committed the misdeed. To maintain his coherence, 
therefore, he may resist adopting this belief or change one of his 
existing beliefs, e.g., his affinity to Federer. This example also 
highlights the benefit of our choice of modeling beliefs as edges in 
contrast to alternatives which view them as nodes (35, 42, 43). 
With this choice, we allow for the sharing of the same nodes (con-
cepts) between multiple beliefs from which coherence between 
beliefs organically emerges via the balance theory (see Fig.  1C 
and Eq. 1).

Fig. 1. The setup of the interacting weighted beliefs model. (A) An illustration of the simple and complex contagion mechanisms, as reflected in the adoption probabil-
ity’s dependence on the number of adopted neighbors. Simple contagion (orange curve) is characterized by a concave shape and exhibits “diminishing returns” due to 
the independence of the exposure’s impact. On the other hand, the complex contagion curve (blue curve) shows a sharp increase due to the reinforcement. (B) An indi-
vidual’s belief system is described as a network of interacting beliefs, where nodes represent concepts and weighted edges between them represent beliefs. Beliefs 
describe the (personal) degree of coherence that agents attribute between pairs of concepts. The color of the edge indicates the belief polarity and the thickness indicates 
its strength. (C) The stability of each triad in an individual’s belief network is modeled using the social balance theory. (D) Each belief network has a bias toward internal 
coherence (stable triads).
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We model the internal coherence by defining the internal disso-
nance of an individual i’s belief network similar to the model 
described in (45), namely

where bi
x
 is the strength of the belief x in the belief network of i, and 

the sum is evaluated over all triads in the belief network, denoted by 
set T and normalized by the total number of triads (|T|). The lower 
the internal dissonance, the more stable the belief system is (see 
Fig. 1, C and D) (39, 46).

Social contagion arises as an interaction between two socially 
connected individuals where one communicates a belief to another. 
Although richer characteristics of social communication can be 
accommodated, here, for the sake of simplicity, the interacting cou-
ples are chosen uniformly at random.

At each time step t, a random individual (sender, node j) com-
municates a randomly chosen belief bj

x from their internal belief 
system. A random individual (receiver, node i) selected from the 
sender’s social neighbors, in response to this communicated belief, 
updates their internal belief ( bi

x
 ) as

where f
[

b
j
x (t),B

i(t)
]

 is a function of the sender’s belief ( bj
x ) and the 

receiver’s current belief system Bi at time t. The tendency of the 
receiver for internal coherence is captured by the derivative of Di 
with respect to their current belief ( bi

x
 ). That is

where α and β are parameters of the model that govern the strength 
of social influence and that of the individual’s predisposi-
tion toward internal coherence, respectively. The derivative 
of internal dissonance with respect to a focal belief is given by 
�Di

�bi
x

= −
1

∣T ∣

∑

x� ,y,z∈Tb
i
y
bi
z
I
�

x�=x
 where the sum is over all triads in the 

belief system and 𝐼 is an indicator function which takes the value 
of 1 only when 𝑥′ = 𝑥 and 0 otherwise. The more stable triads a posi-
tive focal belief 𝑥 (+) is a part of, the lesser the value of �D

i

�bi
x

 , indi-

cating that for greater internal coherence (or smaller internal 
dissonance), the strength of the 𝑥 should increase—stable triads 
become more stable. In other words, the sign of the derivative of the 
internal dissonance with respect to a focal belief captures the di-
rection in which the focal belief of the individual should change for 
its internal dissonance to decrease. A negative (positive) sign indi-
cates that for the internal dissonance to decrease, the strength of 
the focal belief should increase (decrease).

Equation 2 does not constrain the strength of beliefs and thus the 
belief strength can diverge. To prevent it, we constrain the strength 
of each belief in the range [−1, 1]. At each step of the simulation, 
after updating the belief strength, we set bi = min (1, bi) if bi ≥ 0 and 
bi = max (−1, bi) if bi ≤ 0. A softer, but more complex, mapping 
function (for example, a sigmoid function) can also be used. 

Equation 2, in unison with Eq. 3, can lead to a belief x of an individ-
ual i(bi

x
) going to 0. However, this is not a case that requires special 

treatment and is in general only a transitory state. Unless the contri-
bution of all triads of which x is a part exactly balanced to 0, the 
derivative of the dissonance (the tendency to coherence) remains 
nonzero and the belief dynamics still push the belief out of zero. 
Even if the contribution of all triads of which x is part is equal to 0, 
the value of bi

x
 can change as a consequence of the social interac-

tions with “nonzero” partners.
The belief dynamics can be made stochastic, for instance, 

as follows

where 𝒩(μ, σ2) is a normal distribution with mean μ and variance σ2, 
with μ being the same as Eq. 3.

A property of Eq. 2 is that an individual can change the strength 
of a belief even if it interacts with another individual that attributes 
the same strength to that belief. This can be a consequence of the 
individual’s predisposition to be coherent, due to the stochasticity in 
Eq. 4, or due to confirmation bias (which makes the belief stronger). 
Also, note that our formulation necessitates social influence for any 
belief update to occur. Although it is possible to introduce various 
spontaneous belief dynamics, empirical observations show that 
attention to incoherencies is pivotal for their resolution (47). In con-
trast to conventional models like the bounded confidence model 
where the beliefs would remain the same when interacting with a 
same-belief partner (48, 49), our model is more expressive and may 
capture a richer array of empirically known phenomena (50).

RESULTS
Let us now discuss the emergent dynamics of the weighted belief 
network model. We begin with the simplest setup where the social 
network is a star graph and follow the evolution of the hub’s belief 
system in reaction to that of its neighbors (the leaf nodes). From 
this, we observe that, depending on the belief configuration, the 
resulting dynamics can be either simple or complex contagion-like 
in nature. We then approach the problem analytically using Markov 
state machines to verify the results obtained from simulations. Next, 
we move beyond the simplicity of the star graph and study the influ-
ence of network structure on contagion dynamics to offer more evi-
dence for our findings. We first generate social networks using the 
Watts-Strogatz model (51). This allows us to focus on the effect of 
clustering—a discriminant feature between simple and complex 
contagion—on the weighted belief dynamics. We then show that 
when a stable belief system is diffusing in a population of unstable 
beliefs, a random network structure is more beneficial for the conta-
gion, concurring simple contagion dynamics. By contrast, when a 
stable belief system is diffusing in a population of another stable 
belief system, a clustered network is better than a random network, 
aligning with complex contagion dynamics (20). This bolsters our 
claim that our model displays both simple and complex contagion 
dynamics. Last, we generate social networks using the stochastic 
block model (52) and simulate the weighted belief dynamics on it. 
This choice allows us to focus on the dependence on the presence of 
community structure, another discriminant feature between simple 
and complex contagion. Our setup shows the presence of optimal 
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modularity behavior—a phenomenon observed only in complex con-
tagion dynamics (31) (also see section S5)—further highlighting the 
weighted belief network model’s capacity to capture such dynamics.

Emergence of simple and complex contagion
Let us begin with a simplified case of a “star network” where everyone 
is connected exclusively to a single individual serving as a hub. Each 
individual has a fully connected belief network with three nodes rep-
resenting the same notions between individuals (see Fig. 2, A and B).
Scenario 1
Stabilizing contagion behaves like a simple contagion (Fig. 2,  
A and D).

At the start of the simulation, the hub has an unstable belief 
network with beliefs {−1, +1, +1}. A fraction of its neighbors has a 
stable belief network with weights {+1, +1, +1}, whereas the others 
have the same unstable belief network of the hub, i.e., {−1, +1, +1}. 

During the course of the simulation, the belief systems of the leaf in-
dividuals are held fixed (“zealots”), while that of the hub varies as a 
consequence of the pairwise interactions with its neighbors. The frac-
tion of stable individuals is the parameter varied in the simulations.
Scenario 2
Destabilizing contagion behaves like a complex contagion (Fig. 2,  
B and E).

At the start of the simulation, the hub has a stable belief network 
with weights {+1, +1, +1}. A fraction of its neighbors have a differ-
ent stable belief network with weights {−1, −1, +1} and the others 
have stable belief networks with edge weights identical to those of 
the hub, i.e., {+1, +1, +1}. During the course of the simulation, the 
belief system of the hub changes through pairwise interactions with 
its neighbors (zealots). The fraction of stable individuals having a 
stable belief network with weights {−1, −1, +1} is the parameter 
varied in the simulations.

Fig. 2. Both simple and complex contagion dynamics emerge from the weighted belief network model. (A) An unstable hub surrounded by a fixed fraction of stable 
neighbors. (B) A stable hub surrounded by a fixed fraction of stable neighbors of a different kind. (C) The probability that the hub changes to the new belief system exhib-
its the characteristic behaviors of simple (orange) and complex (blue) contagion (N = 40, M = 39, σ = 0.2, α = 1.5, β = 1). The probability is calculated by running the simu-
lation 50 times and calculating the proportion of times the hub “flipped.” Error bars, indicating SD, are then obtained by repeating this process 10 times. Dotted lines are 
results from numerical simulations and solid lines are results from the analytical calculations. Inset: The numerical simulations carried out with the belief systems of 
neighbors of the hub which are initially similar to it are allowed to vary during the simulation. The robustness of results across different α and β is shown in fig. S1 and 
across different σ is shown in fig. S3. (D and E) Intuition for the effect of social influence on an individual’s belief system. (D) An unstable belief system can easily be 
collapsed into a stable state with social influence. (E) On the contrary, a stable individual’s belief system resists social influence that destabilizes it. Repeated exposures are 
necessary to push the individual into an unstable state.
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The only elements of stochasticity here are the specific se-
quence of interactions and the noise in the belief update (σ in 
Eq.  4). We consider the fraction of the simulations in which 
the belief system of the hub flips to the state of its discordant 
neighbors, as a function of their number. Results are shown in 
Fig. 2C.

Our results demonstrate that depending on the scenario—the 
context in which beliefs exist—considered, both simple and com-
plex contagion dynamics can emerge from our model. When a sta-
bilizing contagion stabilizes unstable belief systems, the change in 
belief polarity follows the simple contagion mechanism (scenario 1), 
as exemplified by the concave shape of the orange curve in 
Fig. 2C. When a new stable belief system competes with an already 
established stable belief system, the dynamics manifest itself as a 
complex contagion (scenario 2), characterized by the sigmoidal 
shape of the blue curve in Fig. 2C.

These results also hold when the belief systems of the neigh-
bors, which are initially similar to the hub, are allowed to vary, 
thus treating only the dissimilar neighbors as zealots (see inset of 
Fig. 2). Our results confirm empirical observations suggesting that 
hard/costly changes in behavior (as those between two already 
stable belief systems) are typically driven by a complex contagion 
dynamics (30).

To summarize, depending on the current status of a belief net-
work (stable versus unstable) and the nature of the social influence 
(stabilizing versus destabilizing), the social influence may behave 
like a simple contagion (stabilizing influence to unstable individu-
als; Fig.  2D) or a complex contagion (destabilizing influence to 
stable individuals; Fig. 2E). Although a stable belief system resists 
destabilizing influence, repeated exposures can erode and eventu-
ally destabilize the belief system, which can then move into a differ-
ent stable belief system.

Analytical approach
The expected behavior of the model with the deterministic update 
rule (Eq. 3) can be studied analytically. The evolution of the belief 
system can be described as a Markovian process over a finite and 
discrete set of states representing the belief system.

The set of states and the transition probabilities for scenarios 1 
and 2 are obtained using Eqs. 2 and 3. The parameters of the model 
are set as α = 1.5 and β = 1 (from Fig. 2). Given that we are using the 
deterministic update rule and the beliefs of the hub’s neighbors do 
not change, the set of states the hub can visit is relatively small for 
scenario 1 and is shown in Fig. 3. The respective transition matrix is 
given in Eq. 5.

In the transition matrix π, the element πxy represents the proba-
bility of transition from state y to x. u is the probability that the hub 
receives a belief from any of its neighbors whose belief system is 
different from that of itself. If m is the number of such neighbors 
(the x axis of Fig. 2C) and k is the total number of neighbors (degree 
of the hub), then u =

m

3k
 where the number 3 in the denominator is 

due to the fact that any one of the three beliefs in the dissimilar 
neighbor’s triad can be chosen as the basis for the interaction. Simi-
larly, v is the probability that the hub receives a belief from any of its 
neighbors whose belief system is the same as the hub’s initial system. 
Therefore, v = k−m

3k
 . Note that 3(u + v) = 1, which is the sum of each 

column of the transition matrix

The normalized eigenvector of the transition matrix associated 
with the eigenvalue 1 gives the (m-dependent) stationary probabili-
ty of the hub being in any state.

The probability of the hub flipping its initial unstable belief sys-
tem, {−1, +1, +1}, to a stable belief system (that of its neighbors who 
are different from the hub) is then evaluated as the sum of the prob-
abilities of the hub being either in state {1, 1, 1} or {0.5, 1, 1} at sta-
tionarity. This results in the orange solid curve in Fig.  2C, which 
closely approximates the orange dotted curve obtained from numer-
ical simulations of the stochastic version (Eq. 4). The Markov process 
for scenario 2 is obtained following a similar strategy. This results in 
20 states and can be approached similarly to scenario 1 (see sec-
tion S3). The probability of the hub flipping its initial stable belief 
system, {−1, −1, +1}, to a stable belief system of a different kind (the 
belief system of the neighbors who are different from the hub) is then 
evaluated by the sum of the probabilities of the hub being either in 
state {1, 1, 1} or {1, 0.5, 1} or {0.5, 1, 1} at stationarity. This results in 
the blue solid curve in Fig. 2C which agrees with the solid curve ob-
tained from numerical simulations of the stochastic version (Eq. 4).

Influence of the network structure on the 
contagion dynamics
The structure of the underlying social network plays an important 
role in the diffusion of information. A network with many clusters 

(5)

Fig. 3. The state machine for the hub in scenario 1 in the star graph setup with 
α = 1.5 and β = 1. u(v) is proportional to the probability that the hub receives a 
belief from neighbors dissimilar (similar) to its initial state.
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and a large diameter will be less effective for simple contagion than 
its random counterparts, which—at the expense of locally redun-
dant ties—provides shortcuts that connect remote regions. By con-
trast, the clustered network can enhance the spreading of complex 
contagion by facilitating social reinforcement locally (20).

We expect, therefore, that by setting the parameters of our model 
in the “complex contagion” regime, it will spread more easily in a 
highly clustered network, whereas the opposite would happen in the 
“simple contagion” regime.

We test this hypothesis by simulating our model on a highly clus-
tered network [Watts-Strogatz network (51) with rewiring probabil-
ity, P = 0] and a random network (Watts-Strogatz network with 
rewiring probability P = 1.0)—the two network settings used by 
Centola (20).
Scenario 1
Does simple contagion spread faster on a random network than on 
a clustered network?

As described above, we use the WS network with P = 0 and P = 
1. Everyone’s belief system is initially set in the unstable configura-
tion {−1, +1, +1}. We then choose a fraction of individuals (ρ0) and 
set their belief to the stable configuration {+1, +1, +1}. The belief 
systems of this seed set are held fixed during the simulation. Similar 
to the initialization in Centola (20), seed nodes are concentrated 
for the P = 0 network while seeds are randomly chosen in the P = 1 
case (see Fig. 4A). The results shown in Fig. 4B demonstrate that, as 

expected, the stable-spreading-into-unstable setting produces re-
sults consistent with simple contagion: spreading is more effective 
on a random network than on a highly-clustered one.
Scenario 2
Does complex contagion spread faster on a clustered network than 
on a random network?

Here, with the same two-network setup, we have two competing, sta-
ble belief systems. Every belief system is initially set to be {−1, −1, +1} 
and then the belief system of the seed set (ρ0) is set to be {+1, +1, +1} 
and held fixed during the course of the simulation. In all other aspects, 
the setting is analogous to that described in scenario 1. This scenario 
produces richer dynamics (see section S4.2). When ρ0 is small, the 
highly clustered network spreads the contagion better, replicating the 
phenomenon observed by Centola (see Fig. 4C) (20). However, as we 
increase ρ0, the contagion spreads better on the small-world network 
(see section S4.2). Although this was not reported in Centola’s experi-
ment, it is a reasonable outcome. As we increase the number of seeds, 
the chance they induce multiple reinforcements also goes up. When 
the number of seeds is high and they are distributed across the whole 
network, they can simultaneously induce multiple reinforcements 
across the whole network, producing a rapid global cascade.

Optimal modularity
The community structure of a social network plays an important role 
in the diffusion of information. For instance, a strong community 

Fig. 4. The impact of network structure on the belief cascade. We run the two scenarios (“simple” versus “complex”) on two networks (clustered large world versus random small 
world). As predicted by the theory of simple and complex contagion, we observe that a new stabilizing belief (simple contagion) spreads better in a random small world than in a 
clustered large world, whereas a new stable belief system that competes with an existing stable belief system (complex contagion) spreads better in a clustered large world rather 
than a random small world. Yellow nodes represent the seeds whose belief systems do not change during the course of the simulation (zealots), and purple represents the rest of 
the population. (A) Watts-Strogatz model with rewiring probability P = 0 results in a clustered large world, whereas P = 1 results in a random small world network. (B) Scenario 1: 
Simple contagion spreads faster in a random network (P = 1) than in a clustered network (P = 0). (C) Scenario 2: Complex contagion spreads faster on a clustered network (P = 0) 
than on a random network (P = 1). α = 2, β = 1,N = 100, k = 10, σ = 0.2, ρ0 = 0.08. Curves are obtained from averaging 10 ensembles. See the section S4 for varying ρ0.

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 20, 2024



Aiyappa et al., Sci. Adv. 10, eadh4439 (2024)     12 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 9

structure and “thin” bridges can act as a bottleneck for contagion (19). 
At the same time, a strong community structure facilitates social re-
inforcement and enhances local spreading in scenarios characterized 
by complex contagion (20). A recent study explored systematically 
how the modular structure of networks influences information diffu-
sion, showing that there exists a region of optimal modularity where 
community structure counterintuitively enhances rather than hin-
ders global diffusion of complex contagion (31). We expect the same 
behavior also in our model when it is characterized by complex con-
tagion dynamics.

Figure 5 demonstrates this is the case. As shown in Fig. 5C, we 
consider an ensemble of social networks having N nodes and M 
edges generated using the stochastic block model (52) with nodes 
equally distributed in two communities (blocks). We introduce a 
parameter Ω to control the strength of the two communities. The 
probability for nodes in the same community to be connected to 
each other is given by 4(1−Ω)M

N(N − 2)
 and that of nodes in different 

communities is 4ΩM

N(N − 2)
. A large value of Ω results in more links 

between the two communities and thus a weaker community 
structure.

Next, similar to the setup of belief systems in the case of com-
plex contagion in Fig. 2B, a fraction ρ0 of nodes belonging to the 
same community are initialized with stable belief networks of the 
kind {+1, +1, +1}. The belief networks of these individuals are held 
fixed throughout the simulation (zealots). The remaining set of 
nodes are initialized with stable belief networks of a different kind, 
{−1, −1, +1}. An example of this setup is shown in (Fig. 5 A and B).

Once α and β have been fixed, we compute ρ∞, the fraction 
of nodes that have adopted the zealots’ stable belief system at 

stationarity via numerical simulations. For small values of ρ0 (ρ0 < 
0.06), the new stable belief system is not adopted by the nodes with 
an already stable belief system and contagion essentially fails to 
propagate regardless of Ω (see Fig. 5D). At or just above ρ0 = 0.06, 
all the nodes in the originating community adopt the new belief 
system if Ω is sufficiently small. However, when a critical value of Ω 
is exceeded, the intracommunity connectivity becomes insufficient 
to spread the new stable belief system to the whole originating com-
munity (Fig. 5E, bottom).

A larger value of ρ0 (ρ0 = 0.09) lastly allows for global diffu-
sion of the new stable belief system in the presence of a sufficient 
number of bridges between the two communities. However, in-
creasing the inter-community connectivity at the expense of 
intra-community connectivity (increasing Ω) does not lead to 
the new stable belief systems being adopted in the originating 
community and therefore it cannot be transmitted over the entire 
network, despite the increased number of inter-community links. 
This is reflected in the behavior for the intermediate range of Ω 
that allows global adoption of the new stable belief system 
(Fig. 5E, middle). The presence of a regime of optimal network 
modularity, where the adoption of the new stable belief system is 
maximized, is a phenomenon unique to complex contagion (see 
section S5 for our mathematical argument that this phenomenon 
does not appear in simple contagion) and further buttress the 
idea that our weighted belief model can exhibit both simple and 
complex contagion dynamics depending on the stability of belief 
systems and the type of the incoming belief. When ρ0 becomes 
even larger, increasing Ω does not block the local spreading any-
more, and thus the global diffusion always happens as long as the 
network has enough bridges (Fig. 5E, top).

Fig. 5. The case of complex contagion (two competing stable belief systems) also exhibits optimal modularity behavior. (A and B) An illustration of the initial 
condition of the simulation. The population (purple nodes) has a stable belief system and the zealots (yellow nodes), constrained to a single community, have a stable 
belief system of a different kind. (C) The mixing parameter Ω determines the strength of the community structure in the network. (D) The phase diagram exhibits optimal 
modularity with three phases: no diffusion (dark blue), local diffusion in the seed community (green), and global diffusion (yellow). The robustness of results across differ-
ent α and β is shown in fig. S2. (E) Cross sections of the phase diagram. Error bars indicate SE. The following parameters are used: N = 100, M = 1500, σ = 0.2, α = 2, β = 1, 
40 ensembles.
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DISCUSSION
Here, we demonstrate that both simple and complex contagion can 
emerge from a simple model of the weighted belief network that is 
rooted in the fundamental cognitive predisposition to achieve inter-
nal coherence. The interactions between the existing beliefs of an 
individual, when combined with the propensity to achieve internal 
coherence, provide resistance to incompatible beliefs coming from 
the individual’s social neighborhood. Such resistance can be over-
come by social reinforcement, leading to complex contagion dy-
namics. Our model elucidates how resistance may act as the key 
mechanism that produces the dynamics of complex contagion. An 
original contribution of our work is that simple and complex conta-
gion dynamics emerge from our model depending on the context—
the network of social interaction and the specific distribution of 
beliefs across the population.

The belief system in this work has been operationalized as a 
network where the nodes are concepts, entities, or notions, and the 
edges are beliefs. In such an operationalization, the nodes of the 
belief system are free of attributes. This differs from some recent 
work which considered beliefs as nodes and the interdependencies 
between them as edges (42). In such a case, both nodes and edges 
have attributes to them. Comparing the two operationalizations 
would be an interesting direction for future research.

This work considers the simplest form of a system of interacting 
beliefs (a triad) and does not distinguish between different types of 
nodes and edges in a belief system. The structure of the belief triad 
is static but exploring the effect of dynamical belief networks on 
contagion dynamics can be an interesting direction for future re-
search. It also treats social interactions to be unweighted and undi-
rected and occur on a static network, with an equal rate of interaction 
across all pairs. In addition, an assumption made in Eq. 2 is that the 
belief of the focal individual being updated to decrease dissonance 
is the same as the one being socially influenced by its neighbors. In 
practice, however, an individual might change a different belief, say 
by, to reduce dissonance in reaction to the incoming belief, say bx, 
from its social neighbor (35). Incorporating the complexity of hu-
man social interactions and examining their implications on large-
scale social phenomena will be an interesting direction for future 
work. It will be also fruitful to directly evaluate both the microscop-
ic and macroscopic social dynamics that are predicted by our model.

Eventually, empirically validated and calibrated models of conta-
gion may facilitate our understanding of how, where, and why 
misinformation permeates and spreads. However, we acknowledge 
that such a model of belief dynamics may not be necessary to 
explain, for instance, why rumors follow simple contagion, and pro-
testing follows complex contagion—the risk involved with each ac-
tion (translated into an adoption threshold) may be enough and 
accounting for prior beliefs may not be necessary. Despite numer-
ous limitations, we believe that our demonstration of rich dynamics 
from belief interactions provides a strong rationale for developing 
and using social contagion models that are more firmly grounded in 
cognitive processes.

Supplementary Materials
This PDF file includes:
Section S1 to S5
Figs. S1 to S7
Tables S1 and S2
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