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Modeling the amplification of epidemic
spread by individuals exposed to
misinformation on social media
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Understanding howmisinformation affects the spread of disease is crucial for public health, especially
given recent research indicating that misinformation can increase vaccine hesitancy and discourage
vaccine uptake. However, it is difficult to investigate the interaction between misinformation and
epidemic outcomes due to the dearth of data-informed holistic epidemic models. Here, we employ an
epidemic model that incorporates a large, mobility-informed physical contact network as well as the
distribution of misinformed individuals across counties derived from social media data. The model
allows us to simulate various scenarios to understand how epidemic spreading can be affected by
misinformation spreading through oneparticular socialmedia platform.Using thismodel, we compare
a worst-case scenario, in which individuals become misinformed after a single exposure to low-
credibility content, to a best-case scenario where the population is highly resilient to misinformation.
We estimate the additional portion of the U.S. population that would become infected over the course
of the COVID-19 epidemic in the worst-case scenario. This work can provide policymakers with
insights about the potential harms of exposure to online vaccine misinformation.

Social factors, such as information sharing, play a crucial role in shaping the
dynamics and epidemiology of infectious diseases1,2. For instance, a popu-
lation’s willingness to adopt public healthmeasures (or lack thereof) largely
determines their successes or failures3,4. A population’s behavioral response
to outbreaks can be influenced bymassmedia, as witnessed during the 2009
H1N1 influenza pandemic5, or by social media and the anti-vaccination
movement6–9.

A great deal ofworkhas exploredhow tomodel the influenceof human
behavior on the spread of infectious diseases10,11. Here we focus on risky
behaviors affecting disease transmission that are associated with mis-
informed individuals. Misinformation spreading on social networks has
been linked to poor compliance with COVID-19 public health guidance12.
Greater exposure to unreliable news articles about COVID-19 vaccines has
been linked to an increase in vaccine hesitancy and a decrease in vaccination
rates at both state and county levels in the United States13,14. Exposure to
onlinemisinformation has also been shown to increase vaccine hesitancy in
laboratory experiments15. This is particularly detrimental during vaccina-
tion campaigns as clusters of individuals adopting anti-vaccinationopinions
canmake it challenging for a population to reach herd immunity16,17. Proper
management of epidemic crises in the modern age thus requires the
understanding of the complex relationship between the spread of (mis)

information through online social networks and the spread of disease
through physical contact networks (Fig. 1).

Agent-based simulations have shown that misinformation may
impede the suppression of epidemics in various ways18–21. One model esti-
mated that betweenMarch and November 2021, misinformation caused at
least 198 thousand additional COVID-19 cases, 2800 additional deaths, and
$299M in additional hospital costs inCanada22. However, there is a growing
need to strengthen the connections between simulation results and real-
world outcomes by integrating real-world data from social media23,24.

We address this challenge by proposing a data-informed epidemic
model that takes both the distribution of misinformed individuals and a
physical mobility network into account. Using this data, we augment the
susceptible infected recovered (SIR)model to account for a subpopulationof
“misinformed” individuals. We refer to this as the susceptible misinformed
infected recovered (SMIR) model. We explore how the misinformed group
can affect the larger, ordinary population using a multi-level agent-based
simulation based on two large, data-informed networks: a social network
wheremisinformation spreads and a contact networkwhere the disease can
propagate. A contact network of approximately 20 million nodes is con-
structed by leveraging large-scale Twitter data, county-level voting records,
and cell phonemobility data.We incorporate theoretically extremevalues of
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Fig. 1 | The spread of misinformation affects the transmission of disease.
A Schematic illustration of the misinformation and contact networks. Online social
networks foster misinformation dissemination while physical contact networks,
such as those that connect co-workers in an office or pupils in a school, facilitate
disease transmission. Dotted links indicate that the same people participate in both
networks, which have different topologies; e.g., the information network tends to
have stronger political homophily while the contact network tends to have stronger
geographic homophily.We focus on the impact ofmisinformation spread on disease

transmission (downward arrow), while the opposite effect (upward arrow, e.g.,
individuals ceasing to share misinformation due to illness) falls outside the scope of
this investigation. B A contact network based on 0.01% county population samples.
Nodes are sized based on degree (number of contacts). In a scenario with limited
spread of misinformation (black nodes in C), the simulations of disease spread lead
to a number of infected individuals (red nodes in D). In a scenario where the
misinformation spreads more widely (purple nodes in E), more individuals get
infected (yellow nodes in F).
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the parameter responsible for the epidemic transmission to evaluate best-
and worst-case scenarios about the impact of misinformed individuals on
the spread of disease and obtain quantitative bounds on the harm caused by
misinformation. The proposed model lets us move beyond simplified
experimental settings to assess the impacts of misinformation25.

Results
We utilize a multi-level, agent-based model to examine the influence of
misinformation on epidemic spread. Our approach combines an empiri-
cally derived information network with a contact network calibrated with
real-world data, as illustrated in Fig. 2. Information diffusion is modeled by
leveraging a large set of users of a popular social media platform. Epidemic
simulations are subsequently conducted on contact networks populated
with misinformed individuals.

We start from a large collection of English-language discussions taking
place on Twitter about COVID-19 vaccines26. From ~9months of this data
(January 4–September 30, 2021), we geolocate over 2millionU.S. users who
shared almost 26 million tweets and focus on accounts in 341 U.S. counties
containing more than 200 Twitter users each. We also infer an account’s
political alignment and whether they shared any likely misinformation (see
the “Methods” section). Twitter is not representative of the U.S. population,
and people also access information in other ways, such as traditional media
andword ofmouth.However, this socialmedia platform serves as one large,
realistic network throughwhich people share information about the disease.

With this data, we build a directed andweighted information diffusion
network, in which an edge (i→ j, w) indicates that j retweeted i w times.
There are various ways tomodel the infodemic27.We simulate the spread of
misinformation on this network, as illustrated in Fig. 2A. Accounts that
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Fig. 2 | An idealized example of ourmulti-level modeling framework. A Spread of
misinformation through an information network (dashed lines). Colors represent
ideological homophily. Nodes with bold borders are misinformed about the epi-
demic. Themisinformation spreads through a complex contagion (linear threshold)
model; two scenarios show that a lower threshold ϕ leads to more misinformed
nodes. B Construction of the contact network (solid lines) for counties with suffi-
cient information diffusion data (in black) to provide reasonable estimates about the

fraction of misinformed individuals. Note that these counties account for 63.52% of
U.S. voters. Each location’s population size and ideological mix are based on
empirical data, andmisinformed individuals are based on the information diffusion
model. Links among individuals within and between locations are based on
empirical mobility data.CThe infection spreads through the contact network (black
nodes), according to the SMIR model.
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share or reshare posts containing misinformation are considered mis-
informed. These accounts serve as the initial seeds from which mis-
information proliferates, with exposure to this content likely concentrated
within the wider network28. Many users may not actively participate in
content sharing; for instance, only about half of U.S. Twitter users engage in
sharing29. Even without active sharing, exposure to misinformation or
misleading content can still influence individual behavior6,15.

To account for users who may be misinformed through exposure, we
employ a single-step linear threshold opinion-spreading process30. While
many social influence models have been proposed31, this is a simple way to
capture complex contagion, according to which individuals may require
multiple exposures to misinformation before they become misinformed
themselves32–34. Let a linear threshold ϕ represent the minimum number of
misinformed friends needed for an ordinary node to becomemisinformed.
If the total number ofmisinformed friends of i is greater than or equal to ϕ, i
is marked as misinformed (M). The remaining nodes are marked as
ordinary susceptibles (O).We can interpret ϕ as ameasure of “resilience” to
misinformation; as it increases, individuals require more exposure to mis-
information to be converted to the misinformed group. Conversely, we can
think of ϕ as inversely related to intent or motivation to engage with low-
credibility content35.Note that sincewe explore the full range ofϕ values, the
following results are unaffected whether the threshold is defined based on
the number of users or the number of retweets.

Figure 3A shows how ϕ influences the number of misinformed indi-
viduals within the retweet network. With strong resilience (ϕ > 10), expo-
sure to misinformation does not have much effect and few nodes are
converted to the misinformed group. Conversely, when resilience to mis-
information is very low (as in the simple contagion case ϕ = 1), all nodes
exposed to a misinformation-containing post are converted to the mis-
informed group. Through this process, empirically observed
misinformation-sharing behavior leads to information networks with
misinformed subpopulations of varying sizes based on different ϕ values.

We generate contact networks for different thresholds (1 ≤ ϕ≤ 20) to
compare the impactofmisinformedsubpopulationsofdifferent sizes.Givena
thresholdϕ and the corresponding informationnetwork,we aim to construct
a physical contact network containing empirically calibrated misinformed
subpopulations (Fig. 2B). The process begins by selecting a sample of indi-
viduals fromeach countywithin the informationnetwork.Asparty affiliation
has been identified as a risk factor associatedwith excessmortality during the
COVID-19 pandemic36, county samples are constructed to match the per-
centage of Republicans and Democrats who voted in the 2020 U.S. pre-
sidential election. For each county, we add the sampled nodes to the physical
network marked as misinformed (M) or ordinary susceptible (O), based on
their label within the retweet network. Sampling with replacement allows us

to select individuals such that the overall proportions of Republicans and
Democrats match the voting records. A 10% sample leads toN ≈ 20 million
nodes. A network based on a much smaller sample is illustrated in Fig. 1B.
This process captures empiricalmeasurements of the ideological split, relative
population size, and quantity of misinformed individuals in each county. It
also allows us to account for the known link between the ideological moti-
vations of users and their exposure to misinformation14,28. We add contact
network edges by leveraging cell phone mobility data that provides the
probability of an individual traveling within and between counties. See
Methods for details.

Disease-spreading dynamics on the contact network are simulated
using the SMIR model (Fig. 2C). As in the standard SIR37, a parameter β
describes the average number of infected individuals generated by an
infected individual in a time unit. We can express β ¼ p�k in terms of two
critical parameters that affect the spreading dynamics: the density of the
contact network, captured by its average degree �k, and the transmission
probability p. Infected individuals recover with rate γ.

We extend this epidemic model to account for misinformed and
ordinary subpopulations. Ordinary individuals are considered to be well-
informed about public health guidelines, such as social distancing, mask-
wearing, and vaccination. Mitigation measures such as social distancing
decrease �k, while those such as masking and vaccination decrease p. Mis-
informed individuals, having been exposed to untrustworthy information,
are assumed to be less likely to follow these recommended behaviors,
thereby increasing the risk of infection for themselves and others38. A simple
way to model the combined effects of misinformation on these behaviors
through a single parameter is to set �k ¼ 25, a high value corresponding to
the average number of daily contacts prior to the COVID-19 pandemic39

and use extreme values of p to capture worst- and best-case scenarios. An
effective reduction of contacts, resulting, for example, from social distancing
or lockdowns, can be captured by decreasing the p parameter.

We, therefore, model the refusal of any mitigation measures by
selecting the maximum value pM= 1 for misinformed individuals. In con-
trast, we model the adoption of several mitigation measures by selecting an
extremely small value pO = 0.01 for ordinary individuals. The former sce-
nario portrays a realistic number of interactions during non-pandemic
times, accompanied by high transmission rates due to the absence of pre-
ventive measures, such as social distancing, mask-wearing, or vaccinations.
The latter demonstrates decreased daily interactions and reduced trans-
mission rates resulting from the implementation of these preventive mea-
sures.Using the empirically calibrated contact networks in conjunctionwith
these extreme parameters, the simulation approach allows us to bound the
best- and worst-case scenarios in a data-informed manner (see the
“Methods” section for more information).

Fig. 3 | More misinformed individuals lead to a larger portion of the network
becoming infected. Decreasing the resilience ϕ (A) increases the size of the mis-
informed subpopulation, leading to (B) faster infection spreading and (C) a greater

cumulative number of infections. In panels (B, C) lines and corresponding shaded
regions represent the mean and standard deviation across simulations, respectively.
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The effects of the misinformed subpopulation size on the daily inci-
dence of infection (illustrated in Fig. 1C–F on a small network) are quan-
tified in Fig. 3B on a large network (10% sample). Theworst case capturing a
heavily misinformed population (ϕ = 1) corresponds to an additional 9% of
the population being infected at peak time (a six-fold increase) compared to
a resilient population following expert guidance in the best-case scenario
(ϕ = 20). The peak also occurs approximately two weeks earlier. The
cumulative effect is also significant,with anadditional 14%of thepopulation
infected over the course of the epidemic compared to cases with a more
resilient population—a 32% relative increase (Fig. 3C).

We explored alternative scenarios for the ratio pM/pO through amean-
field approximation. Predictably, as this ratio gets larger, the infected
population increases and the peak infection occurs earlier. We also con-
sidered different sample sizes for the empirical network and found that the
main results are robust. These analyses can be found in Supplementary
Information.

Discussion
Exposure to online healthmisinformation is associatedwith risky behaviors
such as vaccine hesitancy and refusal14. There is also experimental evidence
suggesting a causal link6,15,40. While one study found no evidence that mis-
information reduces intent to vaccinate, the authors report that they did not
have sufficient power to detect small effects41. Assuming an association
exists between exposure to health misinformation on one particular social
media platform and risky behaviors, this work uses large-scale epidemic
simulations to further link the behaviors of misinformed individuals to an
accelerated spread of disease.Ourmodel is anchored in empirical data23,24 to
explore potential outcomes.

Agent-based simulations of the SMIR model let us study the epi-
demic on empirically calibrated contact networks. By comparing a worst-
case scenario, in which individuals become misinformed after a single
exposure to low-credibility content, to a best-case scenario where the
population is highly resilient to misinformation, the model estimates that
the peak of the infection is amplified by a factor of six and accelerated by
two weeks. This would result in an additional 14% of the population
becoming infected—nearly 47 million Americans based on recent U.S.
Census data42. The corresponding price tag of vaccine misinformation
would be over $143B, using estimated healthcare costs associated with
COVID-19 in the U.S.43.

While these figures are based on extreme scenarios, they represent an
alarming bound on the harmof exposure to online vaccinemisinformation.
They should provide public health authorities as well as social media plat-
forms with heightened motivation to curb vaccine misinformation, despite
the difficulties posed by social media design44.

Our results do not address the differential effects of the epidemic on the
two populations of ordinary and misinformed individuals. We carry out
such an analysis using a mean-field approximation of the model, which
assumes all individuals have an equal chance of interacting. Themean-field
model demonstrates how the risky behaviors of misinformed individuals
can adversely impact those following public health guidelines, worsening
outcomes for the entire population (see Supplementary Information).
Additionally, we use themean-fieldmodel to explore the role of homophily
in the population, i.e., scenarios where misinformed individuals are more
likely to be connected to othermisinformed individuals and similarly for the
ordinary population. We find that increasing homophily can benefit the
overall population by protecting ordinary citizens; however, it may also lead
to higher infection rates within the misinformed subpopulation (see Sup-
plementary Information).

We acknowledge several limitations in our approach. The model
assumes the existence of a causal link between exposure to online mis-
information and the adoption of risky behaviors. There is a need formodels
that can provide support for this assumption beyond existing lab
experiments6,15.

Using empirical retweet data as a proxy for social connectionsmay not
capture potential passive exposure to misinformation. While follower

relationships could diminish this limitation, our choice allows us to focus on
users who are more likely to be impacted due to their active engagement.

Wemodel a single wave of infectionwith somewhat arbitrary extreme-
case parameters (pO = 0.01, pM= 1). A broader range of values is explored in
a mean-field scenario, along with the effect of the size of the misinformed
population (seeSupplementary Information).Ofcourse, aspO→ 0,only the
misinformed population can get infected in the model. However, since the
mean-field scenario ignores the network structure, its results cannot be
directly compared to those of the agent-based model. COVID-19 saw
multiple waves of infection with different variants, varying reproduction
numbers, levels of immunity, and so on. Future work should attempt to
quantify the potential effects of misinformation in more realistic scenarios,
where the key parameters pM and pO could be calibrated on empirical
surveillance data from particular regions and time periods.

We also assume uniform resilience to misinformation for all indivi-
duals during the information diffusion process, although this attribute likely
differs across individuals. Future directions could involve more sophisti-
cated models to account for these heterogeneities. For instance, cognitive
models of misinformation acceptance45 could be incorporated into the
simulation with misinformation exposure data collected from social media.
Such integrationwould enable the transition of individuals fromordinary to
misinformed susceptible states throughout the simulation, allowing for a
simultaneous examination of opinion and disease dynamics. Some theo-
retical models have already explored similar approaches and obtained
results that align with our findings18,19.

Finally, although individual beliefs and behaviors may vary over time,
our model simplifies the scenario by dichotomizing individuals into mis-
informed and ordinary subpopulations and assuming constant transmis-
sion rates. Future extensions of themodel could account for a feedback loop
whereby witnessing local infections could drive changes in behaviors
equivalent to the transition of individuals out of the misinformed
population46.

Methods
Twitter and derived data
Twitter posts in the CoVaxxy dataset26 were collected in real-time via the
stream/filter endpoint of the Twitter Application Programming Interface
(API). To capture the online discourse surrounding COVID-19 vaccines in
English, a comprehensive set of English-language keywords was carefully
curated. Beginningwith the initial seeds of “covid” and “vaccine,” a snowball
sampling technique47wasused to identify co-occurring relevant keywords in
December 202026. The resulting list contained almost 80 keywords, available
online48. To confirm the relevance of the collected tweets to the topic of
vaccines, we examined the coverage obtained by incrementally adding
keywords, starting with the most common ones. Over 90% of the tweets in
2021 contained at least one of the threemost common keywords: “vaccine,”
“vaccination,” or “vaccinate.” To infer the location of accounts, we used the
Carmen Python library49 that leverages self-reported location metadata
within user profiles (embedded in tweets). As an account’s location may
change over time (captured across multiple tweets), we utilize the most
recent location. We geolocate 2,047,800 users residing in all 50 U.S. states,
who shared a total of 25,806,856 tweets by mapping self-reported locations
to U.S. counties. The information network is constructed from accounts in
341 counties that contain more than 200 Twitter users each. Political
alignment is estimatedusing a third-party list of annotatednews sources50,51.
It is averaged across all the sources shared by each account. Nodes with an
estimated alignment greater (smaller) than zero are considered Republican
(Democrat). We infer the political alignment of some additional accounts,
who did not share links to news sources, using a label-propagation
algorithm52 on the retweet network. If all of a node’s neighbors have political
alignment scores, its score is estimated using the weighted average of its
neighbors, with weights based on retweets. The process is iterated until each
node without a score has at least one neighbor without a score. Mis-
information is defined at the source level. Tweets containing links to
articles from a list of low-credibility sources compiled by NewsGuard
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(score below 60) are labeled as spreadingmisinformation. This approach
is common practice and has been validated in the literature14,53–56.

Contact network edges
To construct edges in our contact network, we utilize SafeGraph cell-phone
mobilitydata57,which contains informationon thenumberofpeople residing
in over 200K Census-Block-Groups (CBG) who visited 4.3M Points-of-
Interest (POI) in the United States. This data has been widely employed to
study human mobility patterns during the COVID pandemic. We used the
average daily number of individuals moving during 2019 as a reference for
business-as-usual mobility and aggregated all CBGs and POIs at the county
level. This aggregation results in a county-by-county matrix L, where each
element Lxy represents the average daily number of individuals in county x
moving to county y or vice versa. We then normalized Lxy to obtain the
averageprobability of individuals in counties x and y coming into contact and
multiplied by the total number of edges to obtain the expected number of

connections between individuals in counties x and y: Exy ¼
LxyP
x0 ;y0 Lx0y0

�kN
2

where the sum is over all county pairs and
�kN
2 is the total number of edges.

Next, we create a physical contact network with N nodes by following a
procedure akin to a stochastic block model58 used to generate networks with
localized communities. For eachpair of distinct locationsx and y, wedrawExy
edges between random pairs of nodes in x and y. Additionally, we draw Exx
edges among random pairs of individuals within the same location x,
representing homogeneous mixing within each county. At the end of the
process, thenetworkhas the target averagedegree�k.Weuse�k ¼ 25 and show
how this parameter affects the infections in Supplementary Information.

Simulation details
Agent-based SMIR simulations are initiated by randomly selecting 100
misinformed nodes and designating them as infected. The disease-
spreading dynamics are then simulated for 100 steps, which correspond
to days. To align with COVID-19 dynamics, we utilize the CDC’s recom-
mended quarantine period of 5 days as our recovery period59 (γ = 0.2). Each
simulation is repeated ten times, and the average outcome is reported.

Data availability
Data are available in a public repository: https://github.com/osome-iu/
bounding-misinfo-impact-on-disease-spread.

Code availability
Code is available in a public repository: https://github.com/osome-iu/
bounding-misinfo-impact-on-disease-spread.

Received: 30 July 2024; Accepted: 28 February 2025;

References
1. Buckee, C., Noor, A. & Sattenspiel, L. Thinking clearly about social

aspects of infectious disease transmission. Nature 595, 205–213
(2021).

2. Bavel, J. J. V. et al. Using social and behavioural science to support
COVID-19 pandemic response. Nat. Hum. Behav. 4, 460–471 (2020).

3. Mitze, T., Kosfeld, R., Rode, J. & Wälde, K. Face masks considerably
reduce COVID-19 cases in Germany. Proc. Natl Acad. Sci. USA 117,
32293–32301 (2020).

4. Bauch, C. T. & Galvani, A. P. Social factors in epidemiology. Science
342, 47–49 (2013).

5. Poletti, P., Ajelli, M. & Merler, S. The effect of risk perception on the
2009 H1N1 pandemic influenza dynamics. PLoS ONE 6, e16460
(2011).

6. Allen, J., Watts, D. J. & Rand, D. G. Quantifying the impact of
misinformation and vaccine-skeptical content on Facebook. Science
384, eadk3451 (2024).

7. Gallotti, R., Valle, F., Castaldo, N., Sacco, P. & De Domenico, M.
Assessing the risks of ‘infodemics’ in response to COVID-19
epidemics. Nat. Hum. Behav. 4, 1285–1293 (2020).

8. Broniatowski, D. A. et al. Weaponized health communication: Twitter
bots and Russian trolls amplify the vaccine debate. Am. J. Public
Health 108, 1378–1384 (2018).

9. Burki, T. Vaccine misinformation and social media. Lancet Digit.
Health 1, e258–e259 (2019).

10. Verelst, F., Willem, L. & Beutels, P. Behavioural change models for
infectious disease transmission: a systematic review (2010–2015). J.
R. Soc. Interface 13, 20160820 (2016).

11. Funk, S., Salathé, M. & Jansen, V. A. A. Modelling the influence of
human behaviour on the spread of infectious diseases: a review. J. R.
Soc. Interface 7, 1247–1256 (2010).

12. Roozenbeek, J. et al. Susceptibility to misinformation about COVID-
19 around the world. R. Soc. Open Sci. 7, 201199 (2020).

13. Rathje, S., He, J. K., Roozenbeek, J., VanBavel, J. J. & vander Linden,
S. Social media behavior is associated with vaccine hesitancy. PNAS
Nexus 1, https://doi.org/10.1093/pnasnexus/pgac207 (2022).

14. Pierri, F. et al. Online misinformation is linked to early COVID-19
vaccination hesitancy and refusal. Sci. Rep. 12, 1–7 (2022).

15. Loomba,S., deFigueiredo,A., Piatek, S. J., deGraaf,K. &Larson,H. J.
Measuring the impact of COVID-19 vaccine misinformation on
vaccination intent in the UK and USA. Nat. Hum. Behav. https://doi.
org/10.1038/s41562-021-01056-1 (2021).

16. Chan, H.-W. et al. Not-so-straightforward links between believing in
COVID-19-related conspiracy theories and engaging in disease-
preventive behaviours. Humanit. Soc. Sci. Commun. 8, 1–10 (2021).

17. Salathé, M. & Khandelwal, S. Assessing vaccination sentiments with
online social media: implications for infectious disease dynamics and
control. PLoS Comput. Biol. 7, e1002199 (2011).

18. Sontag, A., Rogers, T. & Yates, C. A. Misinformation can prevent the
suppression of epidemics. J. R. Soc. Interface 19, 20210668 (2022).

19. Mumtaz,N.,Green,C.&Duggan,J.Exploring theeffectofmisinformation
on infectious disease transmission. Systems 10, 50 (2022).

20. Prandi, L. & Primiero, G. Effects of misinformation diffusion during a
pandemic. Appl. Netw. Sci. 5, 1–20 (2020).

21. Brainard, J. &Hunter, P. R.Misinformationmaking a disease outbreak
worse: outcomes compared for influenza,monkeypox, and norovirus.
Simulation 96, 365–374 (2019).

22. Himelfarb, A. et al. Fault Lines: Expert Panel on the Socioeconomic
Impacts of Science and Health Misinformation. Technical Report
(Council of Canadian Academies, 2023).

23. Bedson, J. et al. A review and agenda for integrated disease models
includingsocial andbehavioural factors.Nat.Hum.Behav.5, 834–846
(2021).

24. Sooknanan, J. & Comissiong, D. M. G. Trending on social media:
integrating social media into infectious disease dynamics.Bull. Math.
Biol. 82, 1–11 (2020).

25. Tay, L. Q., Lewandowsky, S., Hurlstone, M. J., Kurz, T. & Ecker, U. K. H.
Thinking clearly about misinformation. Commun. Psychol. 2, 1–5 (2024).

26. DeVerna, M. R. et al. CoVaxxy: a collection of English-language Twitter
posts about COVID-19 vaccines. In Proc. International AAAI Conference
on Web and Social Media, Vol. 15, 992–999 (AAAI Press, 2021).

27. D’Andrea, V. et al. Epidemic proximity and imitation dynamics drive
infodemic waves during the COVID-19 pandemic. Phys. Rev. Res. 4,
013158 (2022).

28. Budak, C., Nyhan, B., Rothschild, D. M., Thorson, E. & Watts, D. J.
Misunderstanding the harms of online misinformation. Nature 630,
45–53 (2024).

29. Odabaş, M. 5 Facts About Twitter ‘lurkers’ https://www.pewresearch.
org/fact-tank/2022/03/16/5-facts-about-twitter-lurkers (Pew
Research Center, 2022).

30. Granovetter, M. Threshold models of collective behavior. Am. J.
Sociol. https://doi.org/10.1086/226707 (1978).

https://doi.org/10.1038/s44260-025-00038-y Article

npj Complexity |            (2025) 2:11 6

https://github.com/osome-iu/bounding-misinfo-impact-on-disease-spread
https://github.com/osome-iu/bounding-misinfo-impact-on-disease-spread
https://github.com/osome-iu/bounding-misinfo-impact-on-disease-spread
https://github.com/osome-iu/bounding-misinfo-impact-on-disease-spread
https://doi.org/10.1093/pnasnexus/pgac207
https://doi.org/10.1093/pnasnexus/pgac207
https://doi.org/10.1038/s41562-021-01056-1
https://doi.org/10.1038/s41562-021-01056-1
https://doi.org/10.1038/s41562-021-01056-1
https://www.pewresearch.org/fact-tank/2022/03/16/5-facts-about-twitter-lurkers
https://www.pewresearch.org/fact-tank/2022/03/16/5-facts-about-twitter-lurkers
https://www.pewresearch.org/fact-tank/2022/03/16/5-facts-about-twitter-lurkers
https://doi.org/10.1086/226707
https://doi.org/10.1086/226707
www.nature.com/npjcomplex


31. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social
dynamics. Rev. Mod. Phys. 81, 591–646 (2009).

32. Centola, D. The spread of behavior in an online social network
experiment. Science 329, 1194–1197 (2010).

33. Weng, L., Menczer, F. & Ahn, Y.-Y. Virality prediction and community
structure in social networks. Sci. Rep. 3, https://doi.org/10.1038/
srep02522 (2013).

34. Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of
complex contagion of information in social media: an experiment
using Twitter bots. PLoS ONE 12, e0184148 (2017).

35. Simon, F.M.&Camargo,C.Q. Autopsyof ametaphor: the origins, use
and blind spots of the ‘infodemic’. N. Media Soc. 25, 2219–2240
(2021).

36. JacobWallace, P. Excess death rates for Republican and Democratic
registered voters in Florida and Ohio during the COVID-19. JAMA
Intern. Med. https://jamanetwork.com/article.aspx?doi=10.1001/
jamainternmed.2023.1154 (2023).

37. Anderson, R. M. & May, R. M. Infectious Diseases of Humans:
Dynamics and Control (Oxford University Press, 1991).

38. D’Andrea,V.,Gallotti, R., Castaldo,N. &DeDomenico,M. Individual risk
perception and empirical social structures shape the dynamics of
infectious disease outbreaks.PLoSComput. Biol. 18, e1009760 (2022).

39. Liu, C. Y. et al. Rapid review of social contact patterns during the
COVID-19 pandemic. Epidemiology 32, https://doi.org/10.1097/EDE.
0000000000001412 (2021).

40. Thaker, J. & Subramanian, A. Exposure to covid-19 vaccine hesitancy
is as impactful as vaccine misinformation in inducing a decline in
vaccination intentions in New Zealand: results from pre-post
between-groups randomized block experiment. Front. Commun. 6,
https://doi.org/10.3389/fcomm.2021.721982 (2021).

41. Porter, E., Velez, Y. & Wood, T. J. Correcting COVID-19 vaccine
misinformation in 10 countries. R. Soc. Open Sci. 10, 221097 (2023).

42. UnitedStatesCensusBureau.PopulationClockhttps://www.census.
gov/popclock (2023).

43. Bartsch, S. M. et al. The potential health care costs and resource use
associated with COVID-19 in the United States. Health Aff. 39,
927–935 (2020).

44. Broniatowski, D. A., Simons, J. R., Gu, J., Jamison, A.M. & Abroms, L.
C. The efficacy of Facebook’s vaccine misinformation policies and
architecture during the COVID-19 pandemic. Sci. Adv. 9, eadh2132
(2023).

45. Borukhson, D., Lorenz-Spreen, P. & Ragni, M. When does an
individual accept misinformation? An extended investigation through
cognitive modeling. Comput. Brain Behav. 5, 244–260 (2022).

46. Zeng, R., Chang, X. & Liu, B. Evolutionary modeling and analysis of
opinion exchange and epidemic spread among individuals. Front.
Phys. 12, https://doi.org/10.3389/fphy.2024.1501807 (2024).

47. Di Giovanni, M., Pierri, F., Torres-Lugo, C. & Brambilla, M. VaccinEU:
COVID-19 vaccine conversations on Twitter in French, German and
Italian. In Proc. International AAAI Conference on Web and Social
Media, Vol. 16, 1236–1244 (AAAI Press, 2022).

48. DeVerna, M. R. et al. CoVaxxy Tweet IDs dataset. Zenodo https://doi.
org/10.5281/zenodo.7752586 (2021).

49. Dredze, M., Paul, M. J., Bergsma, S. & Tran, H. Carmen: A Twitter
geolocation system with applications to public health. In Proc. AAAI
Workshop on Expanding the Boundaries of Health Informatics Using
AI (HIAI), Vol. 23, 45 (2013).

50. Robertson, R. E. et al. Auditing Partisan audience bias within Google
Search. Proc. ACM Hum.-Comput. Interact. 2, 1–22 (2023).

51. Robertson, R. Partisan Bias Scores for Web Domains. Harvard
Dataverse https://doi.org/10.7910/DVN/QAN5VX (2018).

52. Conover,M.,Gonçalves,B., Ratkiewicz, J., Flammini, A. &Menczer, F.
Predicting the political alignment of Twitter users. In Proc. 3rd IEEE
Conference on Social Computing (SocialCom) 192–199 (2011).

53. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B. & Lazer,
D. Fake news on Twitter during the 2016 US presidential election.
Science 363, 374–378 (2019).

54. Bovet, A. & Makse, H. A. Influence of fake news in Twitter during the
2016 US presidential election. Nat. Commun. 10, 7 (2019).

55. Lazer,D.M.etal.Thescienceof fakenews.Science359,1094–1096(2018).
56. Shao, C. et al. The spread of low-credibility content by social bots.

Nat. Commun. 9, 1–9 (2018).
57. Yuan,Y., Jahani, E., Zhao, S., Ahn, Y.-Y. &Pentland, A. S. Implications

of COVID-19 vaccination heterogeneity in mobility networks.
Commun. Phys. 6, 206 (2023).

58. Karrer, B. & Newman, M. E. Stochastic blockmodels and community
structure in networks. Phys. Rev. E 83, 016107 (2011).

59. Centers forDiseaseControl andPrevention. Isolation andPrecautions
for People with COVID-19 https://www.cdc.gov/coronavirus/2019-
ncov/your-health/isolation.html (Centers for Disease Control and
Prevention, 2023).

Acknowledgements
We are grateful to Yuan Yuan, Marco Ajelli, Alessio Brina, and Brea Perry
for their helpful discussions. This work was supported in part by the
Swiss National Science Foundation (grant 209250), the National
Science Foundation (grants 1927425 and 1927418), the Army Research
Office (contract W911NF-21-1-0194), the European Union
(NextGenerationEU project PNRR-PE-AI FAIR), the Italian Ministry of
Education (PRIN PNRR grant CODE prot. P2022AKRZ9 and PRIN grant
DEMON prot. 2022BAXSPY), Knight Foundation, and Craig Newmark
Philanthropies.

Author contributions
The initial concept for this researchwasdevelopedbyY.-Y.A., S.F., A.F., and
F.M. The final study design was developed collectively by all authors. Data
collection was led by M.R.D. as part of the CoVaxxy project. All mean-field
modeling was conducted by M.R.D. F.P. developed the early code for the
agent-based simulation, which was subsequently refined and expanded by
M.R.D. for publication. Analysis was conducted primarily by M.R.D., with
help from F.P., and guidance from Y.-Y.A., S.F., A.F., and F.M. The SMIR
model was developed collaboratively by all authors. Visualizations were
created by M.R.D., F.P., and F.M. with input from all authors. The first draft
was written by M.R.D., with revisions from all authors. F.M. oversaw the
progression of the study.

Competing interests
The authors declare no competing interests.

Ethics
This study, focusing on public data, poses minimal risk to human subjects.
Consequently, the Indiana University Institutional Review Board has
exempted it from review (protocol number 1102004860). All data collection
and analysis adhered to Twitter’s terms of service.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44260-025-00038-y.

Correspondence and requests for materials should be addressed to
Matthew R. DeVerna.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s44260-025-00038-y Article

npj Complexity |            (2025) 2:11 7

https://doi.org/10.1038/srep02522
https://doi.org/10.1038/srep02522
https://doi.org/10.1038/srep02522
https://jamanetwork.com/article.aspx?doi=10.1001/jamainternmed.2023.1154
https://jamanetwork.com/article.aspx?doi=10.1001/jamainternmed.2023.1154
https://jamanetwork.com/article.aspx?doi=10.1001/jamainternmed.2023.1154
https://doi.org/10.1097/EDE.0000000000001412
https://doi.org/10.1097/EDE.0000000000001412
https://doi.org/10.1097/EDE.0000000000001412
https://doi.org/10.3389/fcomm.2021.721982
https://doi.org/10.3389/fcomm.2021.721982
https://www.census.gov/popclock
https://www.census.gov/popclock
https://www.census.gov/popclock
https://doi.org/10.3389/fphy.2024.1501807
https://doi.org/10.3389/fphy.2024.1501807
https://doi.org/10.5281/zenodo.7752586
https://doi.org/10.5281/zenodo.7752586
https://doi.org/10.5281/zenodo.7752586
https://doi.org/10.7910/DVN/QAN5VX
https://doi.org/10.7910/DVN/QAN5VX
https://www.cdc.gov/coronavirus/2019-ncov/your-health/isolation.html
https://www.cdc.gov/coronavirus/2019-ncov/your-health/isolation.html
https://www.cdc.gov/coronavirus/2019-ncov/your-health/isolation.html
https://doi.org/10.1038/s44260-025-00038-y
http://www.nature.com/reprints
www.nature.com/npjcomplex


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44260-025-00038-y Article

npj Complexity |            (2025) 2:11 8

http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjcomplex

	Modeling the amplification of epidemic spread by individuals exposed to misinformation on social media
	Results
	Discussion
	Methods
	Twitter and derived data
	Contact network edges
	Simulation details

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Ethics
	Additional information




