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Growing network model for community with group structure
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We propose a growing network model for a community with a group structure. The community consists of
individual members and groups, gatherings of members. The community grows as a new member is introduced
by an existing member at each time step. The new member then creates a new group or joins one of the groups
of the introducer. We investigate the emerging community structure analytically and numerically. The group
size distribution shows a power-law distribution for a variety of growth rules, while the activity distribution
follows an exponential or a power law depending on the details of the growth rule. We also present an analysis
of empirical data from online communities the “Groups” in http://www.yahoo.com and the “Cafe” in http://
www.daum.net, which show a power-law distribution for a wide range of group sizes.
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I. INTRODUCTION group structure. In this paper, we propose a growing network

Emergent properties of artificial or natural complex sys-model for the com_n;]umt)t;_wnh_the groupkstructu_re_. We ;nodel
tems have attracted growing interest recently. Some of ther{!€ community with a bipartite network consisting of two
are conveniently modeled with a network, where constituenfiStinct kinds of vertices representing members and groups,
ingredients and interactions are represented with vertices af§SPectively. A link may exist only between a member vertex
links, respectively. Watts and Strogatz demonstrated tha@nd @ group vertex, which represents a membership relation.
real-world networks display the small-world effect and the 'I(;he fbfamte .network[lo] has been qonsmfiered n tk(]je
clustering property, which cannot be explained with the reguStudy of the movie actor netwofl ] consisting of actors an
lar and random networkgL]. Later on, in the study of the movies, the scientific collaboration netwdrk0,11] of scien-

: tists and articles, and the company director netwd® of
WWW network, Alberfcet al. found that the degre@.e., the directors and boards of directors. Usually those networks are
number of attached linksof each vertex follows a power-

oY . treated as unipartite by projecting out one kind of vertex of
law distribution[2]. Those works have tngger'ed a pur;t of less interesf12,13. Some biological and social networks are
research on the structure and the organization principle

X nown to have a modular structure4,15, where vertices in
complex networkgsee Refs[3-5] for reviews. _ a common module are densely connected, while vertices in
Many real-world networks, e.g., in biological, social, and ifferent modules are sparsely connected. The modular struc-
technological systems, are found to obey the power-law deyre is coded implicitly in the connectivity between vertices.
gree distributior{3]. A network with the power-law distribu-  Unipartite network models with a modular structure were
tion is called a scale-free network. One of the possiblealso studied in Refd.15-21], where vertices form modules
mechanisms for the power law is explained with thewhich in turn form bigger modules hierarchically5-17 or
Barabasi-AlbertBA) model[6]. The model assumes that a the modular structure emerges dynamically as a result of
network is growing and that the rate acquiring a new link forsocial interaction$18-21]. In Ref.[21], each vertex is as-
an existing vertex is proportional to a popularity measuredsigned to a Potts-spin-like variable pointing to its module
by its degree. The popularity-based growth appears verj21]. These studies on the group structures of networks have
natural since, e.g., in creating a new web site, one would linfocused mainly on the groups with a finite number of mem-
it preferentially to popular sites having many links. With the bers. However, there are groups in the real-world online
BA and related network models, structural and dynamicatommunity which keep growing as the community evolves.
properties of networks have been explored extensively. Reflecting growing dynamics of the real-world online
On the other hand, there exists another class of networksommunity, our model takes account of the group structure
which have a group structure. Consider, for example, onlinexplicitly with a bipartite network consisting of member and
communities such as the “Groups” operated by Yahdp group vertices. Upon growing, both the member and group
and the “Cafes” operated by the Korean portal site D&8n  vertices evolve in time. We study the dynamics of the size of
They consist of individual members and groups, gatheringgroups and the activity of the members. The size of a group
of members with a common interest, and growth of the comis defined as the number of members in the group and the
munity is driven not only by members but also by groups. Aactivity of a member is the number of groups in which the
community evolves as an individual registers as a new menmember participates. When the community grows large
ber. The newcomers can create new groups with existingnough, the group size distribution shows a power-law dis-
members or join existing groups. The online community is atribution unlike the network models studied previously
rapidly growing social network9]. The emerging structure [16,21]. To test our model, we analyze the empirical data
would be distinct from that observed in networks without thefrom online communities, the Yahoo “Group§7] and the
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Daum “Cafe”[8], and show that both communities indeed TABLE |. Model description and mean field results for the
show power-law group size distributions for wide ranges ofgroup size distribution exponent. Here, ©gy and Opy are the
group sizes. group number growth rate given in Eq8) and (17), respectively.
This paper is organized as follows. In Sec. I, we intro- The activity distribution follows a power law only for the PF model
duce the growing network model. Depending on the choicéVith the exponenk=2+1/.
of detailed dynamic rules, one may consider a few variants
of the model. Characteristics such as the group size distribu- RIPP=1/(mo+t-1)] P [PP=A//ScAd
tion, the member activity distribution, and the growth of the,, [PC=1/(A+1)] 140 1407,
number of groups are studied analytically in a mean 1‘|eldF Pé_ ! 2/(1- 2/(1-
theory and numerically in Sec. lll. Those characteristics are (Pf=w) (1-w) (1-w)
also calculated for the real-world online communities and

compared with the model results. We conclude the paper,. . . ' .
with a summary in Sec. IV. ation with the variablgfixed) probability. For example, the

RF model has the selection probabill?lel(moﬂ—l) and
the creation probabilityl?jczll(Aj+1). The growth rules are
summarized in Table I.

The whole structure of the community is conveniently

We introduce a model for a growing community with a represented with a bipartite network of two kinds of vertices:
group structure. The community grows by adding a newone for the group and the other for the member. A link exists
member at a time, who may open a new group or join aronly from a member vertex to a group vertex to which it
existing group[22]. The following notations are adopted: A belongs. The member activity and the group size correspond
member entering the community at time stép denoted by to the degree of the corresponding vertex. Figure 1 shows a
l;. The activity, the number of participating groups, lpfis  typical network configuration for the RV model wittng
denoted byA,. As members enter the community, new groups=m=1. To help readers understand the growth dynamics, we
are created or existing groups expand. Tl group is de- add the indices for membeksand groupss,, in the figure. It
noted byG,, its creation time byr,, and its size b\5,. The s easily read off that; selectdy and becomes a member of
total numbers of members and groups are denoted bpyd G, att=1 and that, opens a new grou, with Iy att=2,

Il. MODEL

M, respectively. and so on. Figure 2 shows a configuration of a RV network
Initially, at time t=0, the community is assumed to be with m=my=1 grown up toN=1000 members withM

inaugurated byn, members, denoted Uy(mo_l), ..., lp,be- =452 groups. It is noteworthy that there appear hub groups

longing to an initial groupG,. That is, we have thal(t having a lot of members. The emerging structure of the net-

=0)=m,, M(t=0)=1, A(t=0)=1 for j=—(my-1), ..., O, work will be studied in the next section.

7,=0, and S;(t=0)=m,. At time t, a new individuall; is

introduced into the community and becomes a member by IIl. NETWORK STRUCTURE

repeating the following procedures until its activity reaches

The number of group®/(t), the activity of each member
« Selection: It selects a partner; among existing mem- Ai(t), and the size of each grou,(t) increase as the net-
bers{l with a selection probabilityDjS_ work grows. With those quantities, we characterize the
« Creation or Joining: With a creation probabilit;PJC, it ~ growth dynamics and the network structure. In the following,
creates a new grouBy.,, with the partner;. Otherwise, it W€ study the dynamics of th'o§e,quant|t|es averaged over net-
selects randomly one of the groupslefvith an equal prob- work realizations. For simplicity’s sake, we make use of the
ability and joins it. If I, is already a member of the selected S2me notations for the averaged quantities. The network dy-
group, then the procedure is canceled. namics implies that they evolve in time as follows:
A specific feature of the model varies with the choice of
probabilitiesPS andPC. Regarding the selection, the simplest
is the random choice among existing members with equal 9 @
probability Pjs’:ll(mo+t—1). Note that the selection may be 6 5 (P
regarded as an invitation of a new member by existing mem-
bers. It may then be natural to assume that active members 3 0 1 —@
invite more newcomers. Such a case is modeled with a pref-
erential selection probabilit?ftAj/ (Zr<t AY). After select- 4 2
ing a partneri;, the newcomer may create a new group or z
join one ofIj’s groups having an equal probability. In that 3 —é)
case the creation probability is variablelﬁ%: 1/(Aj+1). In é)

m:

the other case, it may create a new group with a fixed prob-

ability ch=w. Combining the strategies in the two proce-

dures, we consider the four possible different growth models FIG. 1. A network for the RV model withmy=m=1 and N
denoted by RV, RF, PV, and PF. Here,(R stands for the =10 with six groups. The symbols(circles and « (squaresrep-
random(preferential selection, and \(F) for the group cre- resent a membes and a groupG,, respectively.
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FIG. 2. (color onling A network for the RV model withmy
=m=1 andN=1000. A squar€circle) symbol stands for a group
(membey.

A(t+1)=A(t) + mPPY, (1)
M(t+1) = M(t) + m>, PP, 2

j=<t
Sy(t+1) = S,(1) + MY PPy (1 -P))/A;, 3

=<t

where;,=1 if I; belongs toG,,, or 0 otherwise. The initial
conditions are given byA(t=i)=m, M(t=0)=1, and S,(t
=7,)=2 with 7, the creation time ofG,. We analyze the

equations in a continuum limit and in a mean field scheme,

neglecting any correlation among dynamic variables.

Firstly we consider the RV model. Using the correspond-

ing P© and PS in Table |, Egs.(1)—(3) become

%_ m
dt  (A+D(my+t)’ @
dM 1 m
W e 02 A+ D) )
ds, [ 1 S, m
E_<nb+t>(mo+t)§’t(Aj+l)’ ©

where we approximatg;, in Eq. (3) with S,/(my+t), the
fraction of members o5, among all members. The solution
for A(t) is given by
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Ai(t):—1+\/(m+ 1)2+2mln{mo+t[J.
Mo

+1

(7

This shows that an older member with smalléras a larger
activity and that the activity grows very slowly in time. With
the solution forA, one can easily show that;-; m/(A;+1)

= BOrMmy+t) for larget with

1
@RV:f d
0

Hence, the average number of groups increases linearly in
time asM(t) = ®r\t with the group number growth ratég,..
The group size increases algebraically as

m
U— .
V(m+1)?2-2minu

8

+1t \Orv
S,(t) = 2( Mo ) .
My + 7,

We have obtained the activity of each member and the
size of each group, which allow us to derive the distribution
functionsP,(A) andP(S) for the activity and the group size,
respectively. The activity distribution function is given by
the relationP,(A)=P;,(i) |di/dA with the uniform individual
distribution, P;,(i)=1/(my+t). The differentiation can be
done through Eq(7), which yields that the activity distribu-
tion is bounded a,(A)=(A+1)exp-((A+1)?>-(m+1)?)/
(2m)}/m. Similarly, the group size distribution is given by
P9 =P,(7)|d7/dg with the group creation time distribu-
tion P,(7). We assume that the group creation time is distrib-
uted uniformly, which is justified with the linear growth of
M = @r(my+t). Then the group size distribution follows a
power lawPy(S) ~ S "RV with the exponent

9)

Yrv=1+0g. (10

Note that the distribution exponent is determined by the
group number growth rat®gy,.

We now turn to the PF model. With the selection and
creation probabilities, Eq$1)—(3) are written as

dA| mﬂ)Ai
- o (11)
dt 2 A
i<t
dM
E = Mo, (12
R L (13)
dt > A

We also took the approximatiog,=S,/(mg+t) in Eq. (3).
Trivially, we find that the group number grows in time as
M(t)=mwt+1. ForA, andS,, one need evaluate the quantity
2j<Aj. Summing over ali both sides of Eq(11), one ob-
tains that X;_(dA/dt)=mw. Note that d(Z;A)/dt
=2i(dA/dt)+m=(1+w)m, which yields that (Z;<A))
=m(1+w)t+m,,. Hence we obtain the algebraic growth of
the activity and the group size as
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- M)””W
A = m( Ty , a4
_ M)(l—ww(lm)
S,(t) = 2( M1+t +m . (15)

These results allow us to find the distribution functiéhgA)
and P¢(9). They follow the power distributionsP,(A)
~ AT'PF and P¢(S) ~ S7PF with the exponents

)\pF =2+1lw and YPE= 2/(1 - w) . (16)

Here we also assumed the uniform distributionrpfin Eq. 10° 100 10* 10° 10° 1"05 100‘ 101 102 103
(15), which is supported from the linear growth of(t) (@ s (b) A
~mat. In contrast to the RV model, both distributions follow ] o o
the power law. The exponents do not depend on the param- FI_G. 3. (a) The group size distribution an@d) the activity dis-
eterm, but only on the group creation probabiliay. tribution. The mc_>de| parameters are=4,1 for the RV and the PV
For the PV and the RF models, the following can bemodels, respectively. For the RF moda1,=_4 and w=0.6, for the
shown easily: The PV model behaves similarly to the vaFoemOdgl’E]_é'. ar.]g ©=0.5. The Commdun'tyflhas grlown up ¢
model. The group number increases linearly in time as_1 and the distributions are averaged ovef s@mples.
M(t) = ®p\t with the group number growth rat@p,. Unfor-
tunately, we could not obtain a closed form expression for i
However, if we adopt the assumption that the selection pro
ability PiS is proportional toA;+1 instead ofA;, it can be
evaluated analytically as

t_the mean field results, the group size distribution follows the
prower law in all cases. The activity distribution also shows
the expected behavior: the power-law distribution for the PF
model and exponential-type distributions for the other mod-
els. We summarize the distribution exponents in Fig. 4. The
Opy = [\s"m2+ ém+1—-(m+ 1)]/2. (17) measured values of the distribution exponents are in good
agreement with the analytic results.
The approximation would become better for larger values of ~ Qur network models display distinct behaviors from those
m. The group size grows algebraically as in £9).with ®py  pipartite networks such as the movie actor network, the sci-
instead of@ry. Therefore, the group size distribution follows entific collaboration networks, and the director board net-
the power law with the exponent,y presented in Table I.  \ork, which have been studied previously. For the first two
The RF model also displays the power-law group size distrizxamples, their growth is driven only by the member verti-
bution. The distribution exponenyzr is given in Table I.  ces, the actors, and the scientists, respectively. The activity
Note thatygr and yp are the same. On the other hand, theof members may increase in time. However, the group ver-
aCtiVity diStribution fO||0WS an exponential diStribution in the ticesy the movies and the papersy respective'y’ are frozen dy_
RF and the PV models. namically and their sizes are bounded practically. For the last

The Ol’igin for the pOWer'IaW distribution of the group size examp|e, both the member&jirectorg and the groups
is easily understood. In all models considered, the size of a

group increases when one of its members invites a new 35 : | 10— T—T———

member. The larger a group is, the more chance to invite new P \ O g("’f?

members it has. Therefore, there exists a preferential growtt / i \ <D> PF ((,','f - 1))

in the group size, which is known to lead to the power-law v, gk |\ A PF(m=4)| |

distribution[6]. 3L J \\ : P on— )
The activity of a member increases when a newcomer //

selects it and creates a new group. When the random selec- < 6L

tion probability is adopted, such a process does not occul =

preferentially for members with higher activity. It results in =~ 55| i

an exponential-type activity distribution in the RV and RF CD) g\‘; a4k

models. In the PV model, although the selection probability

is proportional to the activity, the creation probability is in-

versely proportional to the activity. Hence, it does not have a 5

1 1 1 1 1 1 1

preferential growth mechanism in the member activity either. 0 02 0-14 ; 06 08 1 ) 0 02 04 06 08 1
Only in the PF model, the activity growth rate is proportional " @
to the activity of each member. Therefore, the activity distri- £, 4. (a) Numerical results fory for the RV and the PV
bution follows the power law only in the PF model. models. The soliddashedl curve represents the analytic mean field

The analytic mean field results are compared with numeriresults for the RV(PV) model. (b) Numerical results fory (open
cal simulations. In simulations, we chosg=mand all data  symbol3 of the RF and the PF models, and foffilled symbols of
were obtained after the average over at least 10 000 samplase PF model. The soli(tashed curve represents the analytic re-
We present the numerical data in Fig. 3. In accordance witBults fory(\) in Table I.
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1085 T ] formation on the activity distribution is not available pub-
licly. Thus, we could not compare the activity distribution of
the communities with the model results. We would like to
add the following remark: A real-world online community
evolves in time as new members are introduced and new
groups are created. At the same time, it also evolves as mem-
bers leave it and groups are closed. Those processes are not
— incorporated into the model. Our model is a minimal model
for the online community, wherein the effects of leaving
members and closed groups are neglected.

slope =-1.15

P.(S)

o Yahoo
o Daum

slope =-1.8

IV. SUMMARY

| 1 |
0 2 4 6

10 10 P 10 10 We have introduced the bipartite network model for a
growing community with the group structure. The commu-
FIG. 5. Cumulative group size distribution of the online com- Nity consists of members and groups, gatherings of members.
munities in Yahoo and Daum. Those ingredients are represented with distinct kinds of ver-
tices. A membership relation is represented with a link be-
(boardg may evolve in time. However, it was shown that the tween a member and a group. Upon growing, a group in-
group size distribution is also boundgth]. creases its size when one of its members introduces a new
Our model is applicable to evolving networks with the member. Hence, a larger group grows preferentially faster
group structure wherein the size of a group may increasghan a smaller group. With the analytic mean field ap-
unlimitedly. The online community is a good example of proaches and the computer simulations, we have shown that
such networks. To test the possibility, we study the empiricathe preferential growth leads to the power-law distribution of
data obtained from the Groups and the Cafe operated bihe group size. On the other hand, the activity distribution
Yahoo and Daum, respectively. It is found in August, 2004 follows the power law only for the PF model with the pref-
that there are 1516 75@ 743 130 groups (cafeg with  erential selection probability and the fixed creation probabil-
76 587 494(351 565 837 cumulative members in the Yahoo ity (see Table )l We have also studied the empirical data
(Daum site. The numbers of members of the groups areobtained from the online communities, the Groups of Yahoo
available via the web sites. Figure 5 presents the cumulativand the Cafe of Daum. Both communities display a power-
distribution P~.(S)=2g .5 P«(S') of the group size. The dis- law distribution of the group size. It suggests our network
tribution has a fat tai[24]. Although the distribution func- model be useful in studying their structure.
tion in the log-log scale show a non-negligible curvature in
the entire range, it can still be fitted reasonably well into the
power law for a range over two decadese the straight
lines drawn in Fig. b From the fitting, we obtain the group This work was supported by Grant No. R14-2002-059-
size distribution exponentyneo=2.8 and yp,um=2.15. 01002-0 from the KOSEF-ABRL program and by Grant No.
The power-law scaling suggests that the online communityKRF-2004-015-C00188. J. D. N. and H. C. J. would like to
may be described by our network model. Unfortunately, in-thank KIAS for the support during the visit.
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