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Abstract 

Background Disease comorbidities and longer-term complications, arising from biologically related associations 
across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific 
differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly 
influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)—
where nodes represent diseases and edges represent their relationships—we investigate sex differences in patterns 
of polygenicity and pleiotropy between diseases.

Results Using UK Biobank summary statistics, we built male- and female-specific DDNs for 103 diseases. This revealed 
that male and female diseasomes have similar topology and central diseases (e.g., hypertensive, chronic respiratory, 
and thyroid-based disorders), yet some phenotypes exhibit sex-specific influence in cross-phenotype associations. 
Multiple sclerosis and osteoarthritis are central only in the female DDN, while cardiometabolic diseases and skin 
cancer are more prominent in the male DDN. Edge comparison indicated similar shared genetics between the two 
graphs relative to a random model of disease association, though notable discrepancies in embedding distances 
and clustering patterns imply a more expansive genetic influence on multimorbidity risk for females than males. 
Analysis of pleiotropic contributions of two sexually-dimorphic single-nucleotide polymorphisms related to thy-
roid disorders further validated a distinct genetic architecture across sexes that influences associations, confirmed 
through examination of corresponding gene expression profiles from the GTEx Portal.

Conclusions Our analysis affirms the presence of GxS interactions in cross-phenotype associations, emphasizing 
the need to investigate the role of sex in disease onset and its importance in biomedical discovery and precision 
medicine research.
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Background
Sexual dimorphism is an integral component to consider 
in our attempts to fulfill the promise of personalized 
medicine [1]. In addition to anatomy, physiology, and 
behavior, biological sex has been found to affect the prev-
alence, onset, and severity of nearly all human diseases 
[1]. Without a knowledge of the impact of sex on disease, 
the pursuit of transformed patient care through per-
sonalized disease prediction and treatment will remain 
incomplete.

Multiple factors contribute to such sex-specific effects 
on disease, including hormonal profiles, epigenetic and 
transcriptomic influences, differences in immune- and 
endocrine-related processes, and behavior [1–5]. Numer-
ous studies have investigated the underlying genetic 
architecture of these sex-based differences—the interac-
tions between genotype and sex on phenotypic outcomes 
that have been uncovered through these publications 
can be referred to as “genotype-by-sex” or “GxS” effects 
[1, 6–8]. For instance, in 1998, O’Donnell et  al. found a 
genetic association with hypertension biased toward 
men through a quantitative trait linkage analysis of sib-
ling pairs in the Framingham Heart Study [9]. In 2009, 
Zhuang and Morris found genetic influences biased 
toward women through a genome-wide association study 
(GWAS) of rheumatoid arthritis [10]. Most recently, in 
2021, Bernabeu et al. conducted a sex-specific phenome-
wide association study (PheWAS) in the UK Biobank 
(UKBB) and found evidence of GxS effects for a variety 
of independent phenotypes including ankylosing spon-
dylitis, gout, and hypothyroidism [11]. In particular, the 
large-scale analysis conducted by Bernabeu et al. stands 
out as an example of the impact that massive patient 
datasets can have in accelerating the identification of 
genetic associations across diseases. Nevertheless, a key 
issue remains across these publications – complex dis-
eases rarely impact patients one-at-a-time.

Shared biological, environmental, and genetic factors 
can all contribute to onset of multiple phenotypes in a 
single patient [12]. These resulting cross-phenotype asso-
ciations can impact patients with increased health bur-
dens and risk of morbidity [12]. Thus, it is insufficient to 
evaluate the genetic architecture of individual diseases if 
we wish to gain a deeper understanding of overall patient 
health [12, 13]. We must consider the genetics underly-
ing the entire landscape of the human phenome and 
genome, known as the human “diseasome [14],” with a 
particular focus on the effects of polygenicity and genetic 
pleiotropy.

Given that GxS interactions are prominent in the 
pathogenesis of many individual complex diseases, we 
hypothesize that sex-specific differences also exist in 
the genetic associations across diseases. The field of 

network medicine offers an intuitive way of investigat-
ing the interactions between phenotypes [13, 15]—in 
particular, the analysis of disease-disease networks 
(DDNs), graphs where nodes represent diseases and 
edges represent shared components between diseases, 
such as associated genetic variants, can reveal global 
and local connectivity across multiple phenotypes [14, 
16–20] as well as highlight the influence of pleiotropy 
[21] in disease onset. By analyzing a DDN, a researcher 
or clinician can evaluate how diseases are linked to one 
another, with immediate insight into potentially shared 
genetic architecture through the identification of plei-
otropic single-nucleotide polymorphisms (SNPs) at 
specific genomic locations. In particular, a DDN gener-
ated from the results of a PheWAS applied to an elec-
tronic health record (EHR)-linked biobank is an ideal 
approach for investigating genetically-derived pheno-
typic interactions for the entire diseasome of a given 
population [22].

Patterns of genetic associations between diseases spe-
cific to different populations can be represented by their 
respective DDNs [19]. Thus, comparing two DDNs to 
one another can reveal disparities in cross-phenotype 
associations across populations. Several approaches 
exist in the field of network science to compare graphs 
to one another [23], including graphlet, graph kernels, 
and graph isomorphisms. With the addition of biologi-
cal context for individual nodes, such methods can pro-
vide insight into differences in the connections between 
disease traits across networks. Furthermore, analysis 
performed by Elgart et  al. in 2022 demonstrated the 
importance of evaluating differences in genetic correla-
tions across gender from a network medicine compari-
son [24].

Thus, the objective of our study was to perform a bio-
logically informed comparison of sex-specific DDNs to 
evaluate genetic interactions in cross-phenotype asso-
ciations across sex. We construct a male- and female-
specific DDN using sex-stratified PheWAS summary 
statistics from the UK Biobank (UKBB) [25] and com-
pare these networks using network statistics, cluster 
analysis, edge set comparison, and node embeddings to 
identify potential GxS interactions. Our analysis iden-
tifies multiple examples of GxS effects in disease asso-
ciations, revealing multiple phenotypes and SNPs of 
interest for future studies of the influence of sex on the 
genetic architecture of multimorbidities.

Methods
Data
We used sex-stratified PheWAS summary statistics from 
Bernabeu et  al. [11] as the source dataset for the con-
struction of our DDNs. These results were generated by 



Page 3 of 14Sriram et al. Human Genomics            (2025) 19:4  

applying DISSECT [26] for multiple phenotype GWAS 
using data from the July 2017 release of the UKBB. Cor-
rections were made for age, array batch, UK Biobank 
Assessment Center, and the first 20 genomic principal 
components. Individuals whose self-reported sex did 
not correspond with their biological chromosomal con-
tent were excluded, as were individuals identified by the 
UKBB as outliers based on genotyping missingness rate 
or heterogeneity [27]. Furthermore, individuals with a 
first or second genetic principal component more than 5 
standard deviations from the mean of self-reported white 
Europeans were excluded. These filtered data consisted of 
452,264 British individuals of European ancestry, includ-
ing 245,494 females and 206,770 males, corresponding 
to 54.28% and 45.72% of the full population respectively. 
Participants were genotyped with either the Affymetrix 
UK BiLEVE Axiom array or the Affymetrix UK Biobank 
Axiom array  [28]. Genotypes were later augmented by 
imputation of roughly 90 million genetic variants from 
the Haplotype Reference Consortium, the 1000 Genomes 
project, and the UK10K project. Biallelic variants that did 
not pass the UK Biobank QC procedures, had a p-value 
less than 1e-50 for departure from Hardy–Weinberg 
equilibrium, and had a minor allele frequency (MAF) less 
than 1e-4 were excluded from sex-stratified PheWAS. 
Finally, a minor allele frequency threshold of 10% was 
applied to select for common variants in the data and 
mitigate effects of low sample size, yielding a final set of 
4,229,346 autosomal (244,743 genotyped and 3,984,603 
imputed) and 7,227 genotyped X-chromosome genetic 
variants [11]. Additional details regarding data genera-
tion and quality control can be found in the original pub-
lication from Bernabeu et al. [11].

The PheWAS performed by Bernabeu et al. used indi-
vidual ICD-10 [29] encodings to identify phenotypes. 
GWASs were also run for “blocks” of ICD-10 codes, cor-
responding to ontological groupings of diseases [29]. We 
considered only these blocked groupings of diseases for 
our DDNs to ensure the interpretability of our analysis. 
Our final dataset for network generation included 104 
phenotypes across 14 disease categories (Table 1).

Construction of DDNs
Curated sex-stratified PheWAS summary data for 104 
binary traits were used to generate the male- and female-
specific DDNs. The methodology described by Verma 
et  al. [19] was applied to create each DDN. An edge in 
the set E =

{

eij
}|V |×|V | was established between each 

pair of binary phenotypes  vi and vj if the two diseases 
shared associations with at least one common SNP at a 
genome-wide significance threshold of 1e-4. eij represents 
the number of shared SNPs between two phenotypes. 

For all analysis that required edge weights to be con-
strained to values between 0 and 1, edge weight values 
were represented by the cosine similarities between the 
vectors of individual nodes in the adjacency matrix A of 
each network. The final DDN is an undirected, weighted 
graph G = (V,E), where node set V represents the set 
of binary phenotypes and edge set E represents all con-
nections between phenotypes. To generate, visualize, 
and analyze both graphs, we made use of Gephi 0.90 
[30] and sigma.js [31], open-source network visualiza-
tion software packages, as well as NETMAGE [18], a 
web-based tool that allows users to upload PheWAS sum-
mary statistics and generate corresponding interactive 
disease-disease networks. Further analysis and visuali-
zation of DDN network statistics were performed using 
R 4.4.1 [32] and Python 3.11.3 [33], including the fol-
lowing Python and R packages: pandas (v2.2.2), seaborn 
(v0.13.2), matplotlib (v3.9.3), numpy (v1.26.4), network 
(v3.4.2), scikit-learn (v1.5.2), community (v0.16), node-
2vec, ClustAssess (v0.3.0), patchwork (v.1.3.0), magrittr 
(v2.0.3), dplyr (v1.1.4), tidyr (v.1.3.1), tibble (v3.2.1), and 
ggplot2 (v3.5.1).

Network comparison
Our resulting male- and female-specific DDNs were 
compared to one another with respect to four attributes: 
network topology, clustering behavior, edge sets, and 
node embeddings (Fig. 1).

Table 1 Counts of disease categories for the phenotypes used 
in analysis

Disease Category Number of 
Phenotypes

Circulatory System 9

Dermatologic 7

Digestive 10

Ear Disorders 4

Endocrine/Metabolic 6

Eye Disorders 10

Genitourinary 6

Hematopoietic 5

Infectious Diseases 6

Mental and Behavioral Disorders 5

Musculoskeletal 13

Neoplasms 7

Nervous System 8

Respiratory 8

Total 104
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Network topology
Network analysis was performed on each graph using 
Gephi [30]. Calculated attributes included degree, 
weighted degree, network diameter, graph density, 
number of connected components, modularity, aver-
age clustering coefficient, and average path length. For a 
full description of the meaning of each network metric, 
refer to Supplemental Table 2. These features provide an 
overview of the general structure of each network and 
serve as an effective baseline to evaluate differences in 
population-level phenotypic interactions. Furthermore, 
the degree, weighted degree, and betweenness central-
ity measurements were evaluated per node to identify 
the most central diseases in each network. For each 
of the three metrics, the top 10 nodes were identified. 
The resulting overlap of these node sets is presented in 
Table  3, and the full centrality results are presented in 
Supplemental Table 3.

Cluster behavior
An assessment of clustering behavior in DDNs can reveal 
patterns of community structure and provide evidence 
of cross-phenotypic interactions across disease catego-
ries. In particular, the Louvain method [34] is a popu-
lar approach for hierarchical clustering within graphs 
based upon modularity optimization. We selected this 
method over other clustering approaches due to its abil-
ity to optimize modularity within networks, its scalability 
for a large number of nodes and edges, its efficiency in 

performing hierarchical clustering of communities and 
subcommunities in a graph, and its flexibility for both 
weighted and unweighted graphs, as well as for directed 
and undirected graphs. [34] The Louvain method was 
applied to each graph to identify community cluster 
assignments for each disease. Cluster categorizations for 
each node were then compared across graphs to evalu-
ate similarity in groupings. The level of correspondence 
between the clustering behavior for the two graphs was 
quantified using the element-centric similarity (ECS) 
measure, an unbiased approach for evaluating cluster 
resemblances [35]. Element-centric similarity was chosen 
over other metrics due to its ability to evaluate clustering 
quality at the level of individual nodes instead of the clus-
ter level. Unlike measures such as Adjusted Rand Index 
or Normalized Mutual Information, ECS directly assesses 
whether relationships between elements are preserved 
rather than on global properties of clusters. It is also 
sensitive to over- and under-clustering, treats all cluster 
assignments equally, and provides a similarity score in 
the range of [0, 1], making it simpler to interpret.

Edge sets
A direct comparison of edges was performed across the 
networks to evaluate the extent of overlap in disease 
associations across the male- and female-specific data. 
Jaccard similarity was calculated to quantify the inter-
sections across datasets. A higher Jaccard similarity 
closer to 1 indicates concordance in the identified genetic 

Fig. 1 Overview of network construction and comparison. (1) Disease-variant associations are taken from PheWAS summary statistics to generate 
(2) corresponding sex-specific disease-disease networks. These networks are then (3) compared to one another through A network topology, B 
clustering behavior, C common edge sets, and D embedding of node features through graph representation learning
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links between diseases across populations. Furthermore, 
edge weights for each graph were normalized to a value 
between 0 and 1 based on the cosine similarity metric, 
and correlations were calculated for the weights of the 
edges shared across the two graphs to determine how 
close to one another the distributions of edge weights 
were.

Node embeddings
Graph representation learning encodes the high-dimen-
sional structure of a network into node-specific vectors, 
allowing for the identification of node-level contributions 
to disease associations and the comparison of nodes to 
one another through their generated features. Graph rep-
resentation learning was applied using node2vec [36] to 
evaluate the contributions of nodes across graphs. Node-
2vec was chosen to perform node embeddings due to its 
ease of use and computational efficiency, its ability to bal-
ance both homophily and structural equivalence in eval-
uating node characteristics, and its use of biased random 
walks to conduct more nuanced exploration of the graph 
compared to other methods. Node2vec takes as input 
the structure of the network represented as an adjacency 
matrix and returns a vector of values for each node in the 
graph, corresponding to each individual disease’s embed-
ding. Its application allows for the characterization of 
each node by the role it plays in both its local neighbor-
hood and the entire diseasome. The return parameter 
(p) and the in–out parameter (q) of node2vec were both 
set to 1 to ensure equal likelihood in exploring local and 
global structure of the networks, akin to a DeepWalk [37] 
approach. Based upon the structures of both graphs and 
in accordance with other default parameters for node-
2vec, the dimension of the embedding representation was 
set to 16, the walk length set to 20, the number of walks 
set to 5000, the window size set to 10, and the number 
of epochs set to 10. Alternate values for these param-
eters were explored but were not found to significantly 
affect embedding comparison analysis. The embedding 
results from node2vec are unique to each graph, and thus 
do not provide insight into cross-network comparisons. 
However, by evaluating embedding distances between 
pairs of nodes within a single graph, we can gain a deeper 
understanding of each node’s influence on the topol-
ogy and structure of the overall network. Thus, based 
on the embedding output from node2vec, we calculated 
the average distance from each node to all other nodes 
in its network, offering us a view of its centrality in the 
diseasome. These average distances were then compared 
per node across networks to determine how similar each 
disease’s connections to other phenotypes was across the 
sexes.

Statistical evaluation against distributions of null network 
models
As a method of determining how statistically significant 
the differences were between metrics for the female and 
male DDNs, 1000 random networks were generated 
using the “networkx” package in Python according to 
the estimated degree distributions of each of the original 
DDNs. Unique pairings of each of these 2000 networks 
(resulting in 2000*1999/2 = 1,999,000 comparisons) were 
then generated to produce distributions of expected dif-
ferences for each of the metrics being evaluated. One-
sample t-tests were conducted to produce p-values 
indicating the statistical significance of the difference 
between the female and male-specific DDN compared to 
the expected difference for each metric.

For the comparison of edges using Jaccard similarity, a 
separate random network generation method was used, 
focused purely on the generation of edges—we deter-
mined all possible edges from the male and female DDNs 
by looking at all combinations of nodes, and then for each 
DDN, we determined the proportion of edges present 
in the full set of possible edges. These proportions dic-
tated the graph density for each network. We then gener-
ated 2000 new edge sets—1000 of these edge sets used 
the graph density from the female DDN, while the other 
1000 used the graph density from the male DDN. For 
each edge in each edge set, based on the currently chosen 
graph density, we randomly generated a number between 
0 and 1 to determine if the edge was present or absent. 
This operation generated 2000 different edge sets, each 
with different numbers of edges that closely reflected 
the graph density of the original male and female DDNs. 
Unique pairings of each of these 2000 networks, again 
resulting in 1,999,000 comparisons across edge sets, were 
then evaluated for Jaccard similarity to develop a distri-
bution of expected Jaccard indices for pairs of randomly 
generated networks. Lastly, a one-sample t-test was con-
ducted to identify the statistical significance of the Jac-
card index between the female- and male-specific DDN 
compared to this expected distribution.

Results
Network topology
We generated our female- and male-stratified DDN from 
the source UKBB PheWAS summary statistics (Fig.  2). 
Both networks included 103 diseases in their main con-
nected components. The full set of phenotypes that 
overlapped between the two graphs consisted of 102 
common diseases (Supplemental Table  1). The female 
DDN included 676 edges, while the male DDN included 
598 edges. Table  2 includes a summary of network sta-
tistics for both graphs. See Supplemental Table  2 for 
a description of each network statistic. The general 
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Table 2 Network statistics for the two DDNs

Female value Male value Difference Expected difference 
(null model)

Standard deviation 
(null model)

P-value

Average degree 13.13 11.61 1.51 0.637 0.890 < 1e−4

Average weighted degree 1391.36 904.45 486.91 226.82 234.29 < 1e−4

Average path length 2.161 2.35 − 1.89e−01 − 4.64e−02 6.69e−02 < 1e−4

Network diameter 4 6 − 2 − 1.96e−01 7.82e−01 < 1e−4

Graph density 0.129 0.114 1.48e−02 6.24e−03 7.94e−03 < 1e−4

Modularity (Louvain method) 0.131 0.239 − 1.08e−01 4.99e−02 6.41e−02 < 1e−4

Average clustering coefficient 0.481 0.398 8.33e−02 2.26e−02 4.45e−02 < 1e−4

Table 3 Most central diseases in sex-stratified DDNs based on degree, weighted degree, and betweenness centrality

Female only Male only Both DDNs

G35 to G37: Demyelinating diseases 
of the central nervous system

I20 to I25: Ischemic heart diseases I10 to I15: Hypertensive diseases

M15 to M19: Arthritis C43 to C44: Melanoma and other malignant neo-
plasms of skin

J40 to J47: Chronic lower respiratory diseases

E70 to E90: Metabolic disorders K90 to K93: Other diseases of the digestive system

L40 to L45: Papulosquamous disorders E10 to E14: Diabetes mellitus

E00 to E07: Disorders of thyroid gland

Fig. 2 A visualization of the A female- and B male-specific DDNs. Nodes are colored by disease category and sized by degree, while edge 
widths are determined by their weight, corresponding to the number of SNPs shared between each pair of diseases. The zoomed-in subgraphs 
of both networks include the top 10 nodes from each graph according to PageRank
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structure and edge compositions of these networks can 
also be explored through an interactive network visu-
alization tool at https:// hdpm. biome dinfo lab. com/ ddn/ 
ukbb- female and.https:// hdpm. biome dinfo lab. com/ ddn/ 
ukbb- male [18].

A direct comparison of these values indicates gen-
eral similarity in the overall structure of the male- and 
female-specific DDNs, with relatively close diameters, 
densities, and degrees for nodes. However, after compari-
sons to expected distributions for the calculated metrics, 
we find that the differences across all metrics are signifi-
cantly larger in magnitude than would be expected at 
random, suggesting the presence of a notable GxS effect 
on the presence of disease multimorbidities. Through a 
visual comparison of the two graphs, a stronger intercon-
nected module is evident at the center of the male DDN, 
represented by thicker edges in the center and thinner 
edges along the periphery. This behavior in the graph 
indicates higher levels of genetic association between 
phenotypes for this subset of diseases. Conversely, the 
female-specific DDN exhibits a much higher average 
weighted degree across nodes (1377.981 compared to 
895.75), represented by more consistent edge thickness 
throughout the entirety of the network. This imbalance 
reflects the higher number of disease-SNP associations 
within the original female PheWAS data.

Central diseases
Within each DDN, central nodes represent diseases with 
a high level of genetic associations to other phenotypes. 
Using three different definitions of network centrality, 
degree, weighted degree, and betweenness centrality, 
we identified the most central diseases in both graphs 
(Table 3, Supplemental Table 3). These nodes correspond 
to phenotypes that exhibit the highest amount of genetic 
pleiotropy with other diseases in each network.

Common central diseases for both graphs included 
hypertensive disorders, bronchitis and asthma, diabe-
tes mellitus, thyroid disorders, and celiac diseases. Cen-
tral diseases in only the female-specific DDN included 
demyelinating diseases of the nervous system such as 
multiple sclerosis and arthritis. Central diseases in only 
the male-specific DDN included ischemic heart diseases 
such as anginas and myocardial infarction, skin cancers, 
metabolic diseases, and papulosquamous diseases such 
as psoriasis.

Clustering behavior
The Louvain method segregated both the female- and 
male-specific DDNs into four distinct modules. How-
ever, the element-centric similarity score between these 
two assignments came out to only 0.304, indicating close 
to random agreement in the clusters assigned to each 

disease across the two networks. Examining a breakdown 
of disease categories (Fig. 3) in the clusters identified by 
Louvain clustering, we see a general level of agreement 
in the largest, most central cluster. Cluster ID 1 includes 
diseases from the circulatory, digestive, eye disorder, and 
musculoskeletal categories (Supplemental Table  4)—
however, individual diseases and the category break-
downs for the remaining clusters differ more broadly. 
Thus, it appears that this core set of phenotypes shares 
strong genetic associations with one another in both 
sexes, and that the clustering behavior for the remain-
ing phenotypes outside of this cluster varies more sig-
nificantly across the two graphs. This variability reflects 
a potential “core-periphery” structure in both networks 
[38], with a core sub-graph of highly interconnected dis-
eases shared across the sexes and varied peripheral sets 
of nodes loosely connected to each core.

Edge sets
Edge sets for both DDNs were compared to one another 
to evaluate consistency of cross-phenotype associations 
across both populations. Out of the 676 edges in the 
female-specific DDN and the 598 edges in the male-spe-
cific DDN, the two graphs shared 266 edges in common 
(Supplemental Fig. 1).

The union of these two edge sets, representing the full 
list of unique cross-phenotype associations identified 
in the creation of our DDNs, was 1008, yielding a Jac-
card similarity coefficient of 26.39%. To account for the 
scale-free nature of the network and reduce the impact 
of weaker weights on the calculation of Jaccard similarity, 
we applied an edge-cut threshold [39], filtering out edges 
from each graph that had weights lower than the median 
edge weight of the original networks (5 for the female-
specific DDN and 8 for the male-specific DDN). After 
dropping edges from both networks with weights lower 
than these values, we found that the Jaccard similarity of 
our two graphs was 30.21%. To evaluate the significance 
of this overlap, we developed a null model distribution 
of randomly-generated edges for each graph to produce 
simulated edge weights. Table  4 presents the results of 
this analysis.

Based on our results, we can see regardless of the 
model that our edge sets differ significantly from similari-
ties expected from a null model. Our Jaccard similarity 
indicates that the genetic associations identified for the 
two sexes exhibit a low level of similarity compared to the 
expected agreement of edge sets.

To evaluate the edges common across our networks, 
we calculated the correlations between edge weights 
after normalization to a range of [0,1] based on cosine 
similarity. The resulting Pearson correlation coefficient 
(r = 0.586) indicates that even though a low number 

https://hdpm.biomedinfolab.com/ddn/ukbb-female
https://hdpm.biomedinfolab.com/ddn/ukbb-female
https://hdpm.biomedinfolab.com/ddn/ukbb-male
https://hdpm.biomedinfolab.com/ddn/ukbb-male


Page 8 of 14Sriram et al. Human Genomics            (2025) 19:4 

of edges are shared between the two graphs, there is a 
moderate similarity in the weights of the edges that are 
shared.

Within the context of disease categories, we find that 
seemingly similar proportions of cross-category phenotype 
associations exist across the two networks, with 89.35% 
of associations connecting diseases of different categories 
for females and 88.13% of associations connecting dis-
eases of different categories for males. However, compar-
ing the difference in proportions to the average difference 

in percentage of cross-category edges between pairs of 
networks from our randomly-generated null distribution, 
we see that our two original networks exhibit statistically 
different proportions of cross-category edges from one 
another (Table 5).

Different patterns of disease interactions across the sexes 
become more apparent when considering the number of 
edges that connect nodes across individual disease cat-
egories (Fig.  4). For the female-specific DDN, numerous 
interactions exist across the musculoskeletal, digestive, and 
endocrine/metabolic disease categories, reflecting strong 
genetic associations present in immune disorders such as 
arthritis and endocrine-related phenotypes such as hyper- 
and hypothyroidism [40]. For the male-specific DDN, 
associations between diseases are primarily concentrated 
within circulatory system phenotypes. This discrepancy 
may reflect known male-specific genetic associations with 
cardiovascular traits [41, 42].

Fig. 3 Bar charts of cluster assignments after Louvain clustering for both DDNs, colored by disease category

Table 4 Jaccard similarity of edge sets across the two DDNs

Original 
graphs

Null model 
mean

Null model 
standard 
deviation

Null model 
p-value

Jaccard 
similarity

30.21% 42.54% 1.96% < 1e−4

Table 5 Cross-category edge proportions

Female value Male value Difference Expected difference (null 
model)

Standard deviation (null 
model)

P-value

Percent of cross-category 
edges

89.35% 88.13% 1.22% − 0.17% 1.20% < 1e−4
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Looking closer at the edges that are shared between 
the two networks, we see a concentration of connections 
between the endocrine/metabolic, circulatory, and mus-
culoskeletal disease categories (Fig.  5), in keeping with 
the central roles we saw such phenotypes play across 
both sexes in the results of our centrality analysis.

Node embeddings
Graph representation learning using node2vec was 
applied to the nodes of each graph to represent disease 
associations within distinct embedding spaces. To iden-
tify diseases that were centrally located within clusters of 
other phenotypes, we pinpointed nodes with the short-
est average embedding distances from other nodes. 
While most phenotypes exhibited no sort of correlation 
in embedding centrality across the two graphs, we found 
that eye disorders occupied the central position in clus-
ters for both sexes. These phenotypes included visual 
disturbances and blindness (H53-H54) for both sexes, 
disorders of conjunctiva (H15-H22) for males, and disor-
ders of lens (H25-H28) for females. This consistent pat-
tern suggests that eye disorders tend to cluster together 
across both sexes. In visualizing the distances between 
centrally embedded diseases common to both networks 
(Fig.  6), we found that, on average, the embedding dis-
tances are more condensed within the female-specific 
DDN than the male-specific DDN.

These shorter distances in the female-specific DDN 
align with the higher density of the network and the 
increased number of disease-variant associations in the 
original female PheWAS data.

Effect of sexually-dimorphic SNPs on cross-phenotype 
associations with thyroid disorders
Within the original source data paper, Bernabeu et  al. 
identified two sexually-dimorphic SNPs (sdSNPs) which 
were found to have significantly different statistical asso-
ciations with E00-E07, disorders of the thyroid gland: 
rs9357120 and rs3130552. We evaluated the effect of 
these sdSNPs on sex-stratified DDN topology to identify 
additional instances of GxS interactions in cross-phe-
notype associations. rs9357120 is located on chromo-
some 6 at position 31,262,940. Despite its association 
with E00-E07 for both strata of the PheWAS data, based 
upon the p-value thresholding required for inclusion in 
our network analysis, rs9357120 was not included in the 
male-specific DDN. Within the female-specific DDN, this 
SNP contributes to an association between E00-E07 and 
G35-G37, corresponding to demyelinating diseases of the 
central nervous system. This association reflects the sig-
nificance of autoimmune disorders for women [40, 43], 
linking both thyroid disorders and phenotypes includ-
ing multiple sclerosis. rs3130552 contributes to links 
between E00-E07 and K90-K93 (Other diseases of the 
digestive system) for both sexes. Furthermore, this SNP 
generates an association with L40-L45 (Papulosquamous 
disorders) only for the female-specific DDN, as well as a 
link with E10-E14 (Diabetes mellitus) only for the male-
specific DDN. These disparate associations reflect the 
relevance for metabolic disorders for males and immune 
disorders for females [40, 43]. We also scraped the Geno-
type-Tissue Expression (GTEx) Portal to identify relevant 
expression quantitative trait loci (eQTLs) [44] associ-
ated with these SNPs. Both SNPs map to multiple genes, 

Fig. 4 Heatmaps of edge sets across disease categories for female- and male-specific DDNs. Darker colors indicate more edges shared 
between disease categories
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Fig. 5 Heatmap of edge sets across disease categories shared by both the female- and male-specific DDNs. Darker colors indicate more edges 
shared between disease categories

Fig. 6 Heatmaps of embedding distances for most central diseases for female- and male-specific DDNs
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including HLA-C, PSORS1C2, PSORS1C3, POU5F1, 
HCG22, HCG27, and CCHCR1. In particular, CCHCR1, 
corresponding to the transcript ENSG00000204536.13, 
is a sex-biased eQTL expressed in thyroid tissue, with a 
p-value of 1.5e-14 and a normalized effect size of − 0.31 
(Fig.  7). This expression pattern suggests a potential 
genetic contributor to the sex-specific cross-phenotype 
associations involving E00-E07.

Discussion
Given that individual diseases are often affected by GxS 
interactions, we hypothesized that cross-phenotype asso-
ciations may also be influenced by GxS effects. Sex-strat-
ified GWAS and PheWAS offer a significant opportunity 
to identify sex-stratified genetic associations with dis-
ease onset. The identification of these possible instances 
of genetic pleiotropy also remains unbiased because 
PheWASs are both disease- and variant-agnostic [21, 
22, 45]. Furthermore, the results of a PheWAS can lend 
themselves to the network-based analysis of associations 
between phenotypes [19].

In this study, we generated and compared DDNs of 
genetic associations between binary phenotypes using 
significant SNPs from sex-stratified PheWAS summary 
data. The similar structures of our male- and female-spe-
cific DDNs suggest consistency of the behavior of disease 
interactions across the sexes. However, the significantly 
lower Jaccard similarity score of the networks’ edge sets 
relative to a null distribution as well as the inconsistent 
clustering behavior of diseases across these two networks 

indicate the presence of GxS interactions in the onset of 
disease multimorbidities.

Furthermore, although the proportion of cross-cat-
egory links is quite consistent across the two networks, 
an analysis of the specific edges reveals a concentration 
of edges between circulatory diseases for males, sug-
gesting the highest level of genetic association within 
this phenotype category. For the female-specific DDN, a 
wider spread of connections exists across musculoskel-
etal, digestive, and endocrine/metabolic diseases, indi-
cating a broader swath of cross-phenotype associations 
for females. Thus, sex seems to be significantly associated 
with the underlying genetic architecture of cross-pheno-
type associations.

Our DDNs also reflect a stronger overall spread of dis-
ease-SNP associations for females compared to males. 
This is evinced through the larger number of edges in the 
female-specific DDN, a higher average weighted degree, 
and shorter average embedding distances after applying 
node2vec. This difference across the sexes may be a result 
of a higher sample size for females [46], or the result of 
factors outside of genetics playing a stronger role in dis-
ease onset for males [1].

Considering the placement of individual diseases 
within each DDN allows us to evaluate the promi-
nence of their genetic associations with other pheno-
types. The more central a node is in the DDN, the more 
influential its genetic underpinnings are with respect 
to its cross-phenotype associations. A phenotype that 
is more central in one DDN than the other indicates 

Fig. 7 Bulk tissue gene expression for CCHCR1 from the GTEx Portal. Distributions are sorted by median log value of gene expression. Thyroid tissue 
exhibits the highest gene expression for a sex-agnostic tissue
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genotype-by-sex interactions that influence its onset 
and its comorbidities. For both of our sex-stratified 
DDNs, cardiometabolic diseases and lower respira-
tory diseases display high centrality. Our DDNs also 
reflect known prominent roles for metabolic disorders 
in males and autoimmune disorders in females [40]. 
More specifically, our male-specific DDN highlights 
the following diseases as central in the network: I20-
I25 (Ischemic heart diseases), C43-C44 (Melanoma and 
other malignant neoplasms of skin), L40-L45 (Papu-
losquamous disorders), and E70-E90 (Metabolic disor-
ders). Meanwhile, our female-specific DDN highlights 
G35-G37 (Demyelinating diseases of the central nerv-
ous system) and M15-M19 (Osteoarthritis) as central. 
These central diseases are all confirmed in the literature 
as exhibiting sex-specific prevalence and onset [42, 47]. 
Our DDNs suggest that genetic components may factor 
not only in their sex-specific onset but also their inter-
actions with other phenotypes.

We identified centrally embedded diseases for both 
networks using node2vec. Our embeddings reveal a high 
level of clustering among eye disorders including visual 
disturbances and blindness, disorders of conjunctiva, 
and disorders of lens, suggesting that these phenotypes 
exhibit lower levels of genetic association with other 
types of diseases.

Investigating sdSNPs that have been found to have 
differential associations with individual phenotypes 
across sexes [11] provides evidence that these SNPs 
also have differential correlations with cross-pheno-
type associations. We highlight two sdSNPs, rs9357120 
and rs3130552, associated with disorders of the thyroid 
gland, and find their differential associations with meta-
bolic disorders for males and autoimmune disorders for 
females. Furthermore, perusal of the GTEx Portal dem-
onstrates that both of these SNPs are associated with a 
corresponding sexually-dimorphic eQTL: CCHCR1. This 
result provides evidence of how a genetic component 
may differentially affect the cross-phenotype associations 
observed across the sexes.

Our comparison of sex-specific DDNs serves as a land-
mark foray into the study of genotype-by-sex interac-
tions in cross-phenotype associations. In particular, our 
network-based representation of disease interactions 
offers an intuitive, methodical way of characterizing the 
role of individual diseases across the human diseasome. 
Identifying individual genetic associations involved in 
these disease links offers further opportunities to pin-
point genetic contributors to disease comorbidities and 
interactions.

There are a few limitations to consider in our study. 
First, factors external to genetics may also interact with 
sex – hormonal profiles, including boosted immune 

support from estrogen, epigenetic and transcriptomic 
influences, endocrine profiles, and the onset of meno-
pause can all lead to sex-specific differences in disease 
onset [3, 5]. Indeed, the consideration of age as a vari-
able is crucial to improve our understanding of the onset 
of pathological phenotypes – future work should com-
pare age-stratified DDNs to improve our ability to infer 
disease risk profiles. The fulfillment of gender-based 
roles and societal biases related to gender are also likely 
to influence the source data with which we work [3, 4]. 
For instance, diagnoses from clinicians are prone to bias, 
such as overdiagnoses of mental disorders and under-
diagnoses of pain-related phenotypes for women [3, 4]. 
Furthermore, men have been found to be riskier in their 
daily activities and less likely to seek professional care 
when needed [3, 4]. In terms of the specific phenotyp-
ing definitions within the source data, the ICD-10 coding 
system is known to be an imperfect method of captur-
ing true occurrences of diseases in patient datasets [48]. 
Our use of the “blocked” ICD-10 phenotype groupings 
was applied to improve our definitions of diseases but 
is still not necessarily the most accurate representa-
tion of patient health. Similarly, our binary representa-
tions of disease are limited in the extent of information 
that can be represented regarding patient diseases com-
pared to continuous phenotypes [49]. With respect to 
data quality control and processing, the minor allele fre-
quency threshold of 10% in the source data may lead to 
missed phenotype-SNP associations. However, as clari-
fied through response papers to Bernabeu et  al., these 
genetic associations are still represented through other 
SNPs in LD with true causative or correlative SNPs [50, 
51]. Further, we used a strict p-value threshold of 1e-4 to 
establish a SNP as being significantly associated with a 
phenotype in our DDNs [17]. While this stringency may 
lead to our missing some genetic associations between 
phenotypes in our networks, we can also be more confi-
dent in the connections that are ultimately included [17]. 
We also note that our DDNs represent data only for the 
UKBB population, meaning that conclusions drawn from 
our analysis can only be interpreted from a British Euro-
pean perspective [25]. Thus, any conclusions drawn from 
our analysis need to bear these potential inaccuracies and 
biases in mind. Most significantly, it is unclear how much 
of an effect the difference in sample sizes between the 
male and female populations in the source UKBB dataset 
have affected the genetic associations to which we have 
access. Further research must be conducted externally to 
determine the extent to which sample size affects results 
in genome-wide association studies.

Future work that extends our analysis includes the 
comparison of sex-specific DDNs derived from differ-
ent baseline populations such as the All of Us dataset 
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[52] or the Penn Medicine Biobank [53], the applica-
tion of different graph representation learning meth-
ods [54] and the comparison [55] of these embeddings, 
an incorporation of mendelian randomization [56] to 
identify potential causative genetic relationships, and a 
further investigation of individual SNPs that may con-
tribute to sex-specific associations between diseases.

Overall, our sex-stratified network comparison con-
firms the presence of GxS interactions in cross-phe-
notype associations and helps to navigate the study of 
complex diseases through the lens of genetic pleiotropy 
and polygenicity. The results of our analysis can facili-
tate future explorations of precision medicine, provid-
ing further insight into sex-specific genetic targets for 
drug development [57] and improving our ability to 
conduct disease risk prediction [1].

Conclusions
Through the construction and comparison of disease-
disease networks from sex-stratified PheWAS summary 
data, we find evidence of numerous genotype-by-sex 
interactions that influence cross-phenotype associa-
tions across the human diseasome. We highlight dis-
ease categories as well as individual phenotypes that 
exhibit evidence of GxS influence in their associations 
with other phenotypes. Our analysis confirms several 
known sex-biased traits and identifies new associations 
as well, suggesting genetic contributors to their connec-
tions with other phenotypes. Ultimately, our work pro-
vides a view into the interplay between sex and genetics 
on disease associations and comorbidities across the 
landscape of human disease.
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