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Link communities reveal multiscale complexity in
networks
Yong-Yeol Ahn1,2*, James P. Bagrow1,2* & Sune Lehmann3,4*

Networks have become a key approach to understanding systems
of interacting objects, unifying the study of diverse phenomena
including biological organisms and human society1–3. One crucial
step when studying the structure and dynamics of networks is to
identify communities4,5: groups of related nodes that correspond
to functional subunits such as protein complexes6,7 or social
spheres8–10. Communities in networks often overlap9,10 such that
nodes simultaneously belong to several groups. Meanwhile, many
networks are known to possess hierarchical organization, where
communities are recursively grouped into a hierarchical struc-
ture11–13. However, the fact that many real networks have com-
munities with pervasive overlap, where each and every node
belongs to more than one group, has the consequence that a global
hierarchy of nodes cannot capture the relationships between over-
lapping groups. Here we reinvent communities as groups of links
rather than nodes and show that this unorthodox approach suc-
cessfully reconciles the antagonistic organizing principles of over-
lapping communities and hierarchy. In contrast to the existing
literature, which has entirely focused on grouping nodes, link
communities naturally incorporate overlap while revealing hier-
archical organization. We find relevant link communities in many
networks, including major biological networks such as protein–
protein interaction6,7,14 and metabolic networks11,15,16, and show
that a large social network10,17,18 contains hierarchically organized
community structures spanning inner-city to regional scales while
maintaining pervasive overlap. Our results imply that link com-
munities are fundamental building blocks that reveal overlap and
hierarchical organization in networks to be two aspects of the
same phenomenon.

Although no common definition has been agreed upon, it is widely
accepted that a community should have more internal than external
connections19–24. Counterintuitively, highly overlapping communities
can have many more external than internal connections (Fig. 1a, b).
Because pervasive overlap breaks even this fundamental assumption, a
new approach is needed.

The discovery of hierarchy and community organization has always
been considered a problem of determining the correct membership
(or memberships) of each node. Notice that, whereas nodes belong to
multiple groups (individuals have families, co-workers and friends;
Fig. 1c), links often exist for one dominant reason (two people are in
the same family, work together or have common interests). Instead of
assuming that a community is a set of nodes with many links between
them, we consider a community to be a set of closely interrelated links.

Placing each link in a single context allows us to reveal hierarchical
and overlapping relationships simultaneously. We use hierarchical
clustering with a similarity between links to build a dendrogram
where each leaf is a link from the original network and branches

represent link communities (Fig. 1d, e and Methods). In this den-
drogram, links occupy unique positions whereas nodes naturally
occupy multiple positions, owing to their links. We extract link com-
munities at multiple levels by cutting this dendrogram at various
thresholds. Each node inherits all memberships of its links and can
thus belong to multiple, overlapping communities. Even though we
assign only a single membership per link, link communities can also
capture multiple relationships between nodes, because multiple
nodes can simultaneously belong to several communities together.

The link dendrogram provides a rich hierarchy of structure, but to
obtain the most relevant communities it is necessary to determine the
best level at which to cut the tree. For this purpose, we introduce a
natural objective function, the partition density, D, based on link
density inside communities; unlike modularity20, D does not suffer
from a resolution limit25 (Methods). Computing D at each level of the
link dendrogram allows us to pick the best level to cut (although
meaningful structure exists above and below that threshold). It is
also possible to optimize D directly. We can now formulate overlap-
ping community discovery as a well-posed optimization problem,
accounting for overlap at every node without penalizing that nodes
participate in multiple communities.

As an illustrative example, Fig. 1f shows link communities around
the word ‘Newton’ in a network of commonly associated English
words. (See Supplementary Information, section 6, for details on
networks used throughout the text.) The ‘clever, wit’ community is
correctly identified inside the ‘smart/intellect’ community. The
words ‘Newton’ and ‘Gravity’ both belong to the ‘smart/intellect’,
‘weight’ and ‘apple’ communities, illustrating that link communities
capture multiple relationships between nodes. See Supplementary
Information, section 3.6, for further visualizations.

Having unified hierarchy and overlap, we provide quantitative,
real-world evidence that a link-based approach is superior to exist-
ing, node-based approaches. Using data-driven performance mea-
sures, we analyse link communities found at the maximum partition
density in real-world networks, compared with node communities
found by three widely used and successful methods: clique percola-
tion9, greedy modularity optimization26 and Infomap21. Clique per-
colation is the most prominent overlapping community algorithm,
greedy modularity optimization is the most popular modularity-
based20 technique and Infomap is often considered the most accurate
method available27.

We compiled a test group of 11 networks covering many domains
of active research and representing the wide body of available data
(Supplementary Table 2). These networks vary from small to large,
from sparse to dense, and from those with modular structure to those
with highly overlapping structure. We highlight a few data sets of
particular scientific importance: The mobile phone network is the
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most comprehensive proxy of a large-scale social network currently
in existence17,18; the metabolic network iAF1260, from Escherichia coli
K-12 MG1655 strain, is one of the most elaborate reconstructions
currently available16; and the three protein–protein interaction net-
works of Saccharomyces cerevisiae are the most recent and complete
protein–protein interaction data yet published14.

These networks possess rich metadata that allow us to describe the
structural and functional roles of each node. For example, the bio-
logical roles of each protein in the protein–protein interaction net-
work can be described by a controlled vocabulary (Gene Ontology
terms28). By calculating metadata-based similarity measures between
nodes (Methods and Supplementary Information, section 5), we can
determine the quality of communities by the similarity of the nodes
they contain (‘community quality’). Likewise, we can use metadata to
estimate the expected amount of overlap around a node, testing the
quality of the discovered overlap according to the metadata (‘overlap
quality’). For example, metabolites that participate in more meta-
bolic pathways are expected to belong to more communities than
metabolites that participate in fewer pathways. Some methods may
find high-quality communities but only for a small fraction of the
network; coverage measures describe how much of the network was
classified by each algorithm (‘community coverage’) and how much
overlap was discovered (‘overlap coverage’). Each community algo-
rithm is tested by comparing its output with the metadata, to deter-
mine how well the discovered community structure reflects the
metadata, according to the four measures. Each measure is normalized
such that the best method attains a value of one. ‘Composite perfor-
mance’ is the sum of these four normalized measures, such that the
maximum achievable score is four. Full details are in Methods and
Supplementary Information, sections 5 and 6.

Figure 2 displays the results of this quantitative comparison, show-
ing that link communities reveal more about every network’s meta-
data than other tested methods. Not only is our approach the overall
leader in every network, it is also the winner in most individual aspects
of the composite performance for all networks, particularly the quality
measures. The performance of link communities stands out for dense
networks, such as the metabolic and word association networks,
which are expected to have pervasively overlapping structure.
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Figure 2 | Assessing the relevance of link communities using real-world
networks. Composite performance (Methods and Supplementary
Information) is a data-driven measure of the quality (relevance of discovered
memberships) and coverage (fraction of network classified) of community
and overlap. Tested algorithms are link clustering, introduced here; clique
percolation9; greedy modularity optimization26; and Infomap21. Test

networks were chosen for their varied sizes and topologies and to represent
the different domains where network analysis is used. Shown for each are the
number of nodes, N, and the average number of neighbours per node, Ækæ.
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LC, literature
curated; PPI, protein–protein interaction; Y2H, yeast two-hybrid.

Figure 1 | Overlapping communities lead to dense networks and prevent
the discovery of a single node hierarchy. a, Local structure in many
networks is simple: an individual node sees the communities it belongs to.
b, Complex global structure emerges when every node is in the situation
displayed in a. c, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram, preventing a single tree from encoding the full hierarchy.
d, e, An example showing link communities (colours in d), the link similarity
matrix (e; darker entries show more similar pairs of links) and the link
dendrogram (e). f, Link communities from the full word association network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts
related to science and allow substantial overlap. Note that the words were
produced by experiment participants during free word associations.
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It is instructive to examine further the statistics of link communities
in the metabolic and mobile phone networks (Fig. 3). The community
size distribution at the optimum value of D is heavy tailed for both
networks, whereas the number of communities per node distinguishes
them (Fig. 3, insets): Mobile phone users are limited to a smaller range
of community memberships, most likely as a result of social and time
constraints. Meanwhile, the membership distribution of the metabolic
network displays the universality of currency metabolites (water, ATP
and so on) through the large number of communities they participate
in. Notable previous work11,15 removed currency metabolites before
identifying meaningful community structure. The statistics presented
here match current knowledge about the two systems, further con-
firming the communities’ relevance.

Having established that link communities at the maximal partition
density are meaningful and relevant, we now show that the link
dendrogram reveals meaningful communities at different scales.
Figure 4a–c shows that mobile phone users in a community are
spatially co-located. Figure 4a maps the most likely geographic loca-
tions of all users in the network; several cities are present. In Fig. 4b,
we show (insets) several communities at different cuts above the
optimum threshold, revealing small, intra-city communities. Below
the optimum threshold, larger, yet still spatially correlated, com-
munities exist (Fig. 4c). Because we expect a tight-knit community
to have only small geographical dispersion, the clustered structures
on the map indicate that the communities are meaningful. The geo-
graphical correlation of each community does not suddenly break
down, but is sustained over a wide range of thresholds. In Fig. 4d, we
look more closely at the social network of the largest community in
Fig. 4c, extracting the structure of its largest subcommunity along
with its remaining hierarchy and revealing the small-scale structures
encoded in the link dendrogram. This example provides evidence for
the presence of spatial, hierarchical organization at a societal scale. To
validate the hierarchical organization of communities quantitatively

throughout the dendrogram, we use a randomized control dendro-
gram that quantifies how community quality would evolve if there
were no hierarchical organization beyond a certain point. Figure 4e
shows that the quality of the actual communities decays much more
slowly than the control, indicating that real link dendrograms possess
a large range of high quality community structures. The quantitative
results of Fig. 4 are typical for the full test group, implying that rich,
meaningful community structure is contained within the link den-
drogram. Additional results supporting these conclusions are pre-
sented in Supplementary Information, section 7.

Many cutting-edge networks are far from complete. For example,
an ambitious project to map all protein–protein interactions in yeast
is currently estimated to detect approximately 20% of connections14.
As the rate of data collection continues to increase, networks become

N
um

b
er

 o
f c

om
m

un
iti

es

Number of users per community

106

105

104

103

102

101

100

0 5 10 15 20 25 30 35

N
um

b
er

 o
f u

se
rs

Number of communities
per user

103

102

101

106

105

104

103

102

101

100

100

101 102 103

101 102 103

N
um

b
er

 o
f c

om
m

un
iti

es

Number of metabolites per community

103

102

101

100

0 50 100 150 200

N
um

b
er

 o
f

m
et

ab
ol

ite
s 

Number of communities
per metabolite 

Mobile phone

Metabolic

H2O, H+

ATP
ADP

Pi

Figure 3 | Community and membership distributions for the metabolic and
mobile phone networks. The distribution of community sizes and node
memberships (insets). Community size shows a heavy tail. The number of
memberships per node is reasonable for both networks: we do not observe
phone users that belong to large numbers of communities and we correctly
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currency metabolites in many metabolic reactions is naturally incorporated
into link communities, whereas their presence hindered community
identification in previous work11,15.
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Q, as a function of dendrogram level, compared with random control
(Methods).
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denser and denser, overlap becomes increasingly pervasive and
approaches specifically designed to untangle complex, highly over-
lapping structure become essential. More generally, the shift in per-
spective from nodes to links represents a fundamentally new way to
study complex systems. Here we have taken steps towards under-
standing the consequences of a link-based approach, but its full
potential remains unexplored. Our work has primarily focused on
the highly overlapping community structure of complex networks,
but, as we have shown, the hierarchy that organizes these overlapping
communities holds great promise for further study.

While finalizing this manuscript, we have been made aware of a
similar approach developed independently by T. S. Evans and R.
Lambiotte29,30.

METHODS SUMMARY
Link communities. We denote the set of node i and its neighbours as n1(i). For

link pairs that share a node, the similarity between links eik and ejk is
S(eik ,ejk)~ nz(i)\nz(j)j j= nz(i)|nz(j)j j. Single-linkage hierarchical cluster-

ing then builds a link dendrogram (agglomerate ties in S simultaneously).

Cutting this dendrogram at some threshold yields link communities. See Sup-

plementary Information for details, generalizations to multipartite and weighted

graphs, and other algorithms.

Partition density. For a network with M links, {P1, …, PC} is a partition of the

links into C subsets. Subset Pc has mc 5 jPcj links and nc 5 ^eij[Pc
fi,jg

�� �� nodes.

Then we define

Dc~
mc{(nc{1)

nc (nc{1)=2{(nc{1)

This is mc normalized by the minimum and maximum numbers of links possible

between nc connected nodes. (We assume that Dc 5 0 if nc 5 2.) The partition

density, D, is the average of Dc, weighted by the fraction of present links:

D~
2

M

X

c

mc

mc{(nc{1)

(nc{2)(nc{1)
ð1Þ

Equation (1) does not possess a resolution limit25 because each term is local in c.

Community validation. Nontrivial communities possess 31 nodes. We use

metadata ‘enrichment’ to assess community quality, comparing how similar

nodes are within nontrivial communities relative to all nodes (global baseline).

Overlap quality is the mutual information between the number of nontrivial

memberships and the overlap metadata (Supplementary Table 2). Community

coverage is the fraction of nodes belonging to 11 nontrivial communities.

Overlap coverage, because methods with equal community coverage can extract

different amounts of overlap, is the average number of nontrivial memberships

per node. See Supplementary Information for full details.

Control dendrogram. To study the hierarchy beyond some threshold, t*, we begin

hierarchical clustering, merging all edge pairs with S $ t* and thus fixing the
community structure at threshold t 5 t*. Then we randomly shuffle similarities

amongst the remaining edge pairs with S , t*, and continue the merging process.

Full details are in Supplementary Information, section 7.4.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Link communities. For an undirected, unweighted network, we denote the set of

node i and its neighbours as n1(i). Limiting ourselves to link pairs that share a

node, expected to be more similar than disconnected pairs, we find the similarity,

S, between links eik and ejk to be

S(eik ,ejk)~
nz(i)\nz(j)j j
nz(i)|nz(j)j j ð2Þ

Shared node k does not appear in S because it provides no additional information

and introduces bias. Single-linkage hierarchical clustering builds a link dendro-

gram from equation (2) (ties in S are agglomerated simultaneously). Cutting this

dendrogram at some clustering threshold—for example the threshold with maxi-

mum partition density (see below)—yields link communities. See Supplementary

Information for details, generalizations to multipartite and weighted graphs, and

the usage of other algorithms.

Partition density. For a network with M links and N nodes, P 5 {P1, …, PC} is a

partition of the links into C subsets. The number of links in subset Pc is mc 5 jPcj.
The number of induced nodes, all nodes that those links touch, is

nc 5 ^eij[Pc
fi,jg

�� ��. Note that
P

cmc 5 M and
P

cnc $ N (assuming no uncon-

nected nodes). The link density, Dc, of community c is

Dc~
mc{(nc{1)

nc (nc{1)=2{(nc{1)

This is the number of links in Pc normalized by the minimum and maximum

numbers of links possible between those nodes, assuming they remain con-

nected. (We assume that Dc 5 0 if nc 5 2.) The partition density, D, is the average

of Dc, weighted by the fraction of present links:

D~
2

M

X

c

mc

mc{(nc{1)

(nc{2)(nc{1)
ð3Þ

Equation (3) does not possess a resolution limit25 because each term is local in c.

Community validation. Nontrivial communities possess 31 nodes. We use

metadata ‘enrichment’ to assess community quality, comparing how similar

nodes are within nontrivial communities relative to all nodes (global baseline).

Overlap quality is the mutual information between the number of nontrivial

memberships and the overlap metadata (Supplementary Table 2). Community

coverage is the fraction of nodes belonging to 11 nontrivial communities.

Overlap coverage, because methods with equal community coverage can extract

different amounts of overlap, is the average number of nontrivial memberships

per node (equivalent to community coverage for non-overlapping methods). See

Supplementary Information for details.

Control dendrogram. To test whether the hierarchical structure is valid beyond

some threshold, t*, we introduce the following control. First we compute the

similarities S(eik, ejk) for all connected edge pairs (eik, ejk), as normal. We then

perform our standard single-linkage hierarchical clustering, merging all edge

pairs in descending order of S for S $ t*, fixing the community structure up to

t 5 t*. Below t*, we randomly shuffle similarities among the remaining edge pairs

with S , t*, then proceed with the merging process as before. This randomiza-

tion only alters the merging order, and ensures that the rate of edge pair merging

is preserved, because the same similarities are clustered. This strictly controls not

only the merging rate but also the similarity distributions and the high-quality

community structure found at t*. This procedure ensures that the dendrogram is

properly randomized while other salient features are conserved. Full details are in

Supplementary Information, section 7.4.
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