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Abstract Social media and social networking platforms have flourished with the
rapid development of mobile technology and the ubiquitous use of the Internet.
As a result, memes, or pieces of information spreading from person to person, can
be reshared among users quickly and gain huge popularity. As viral memes have
tremendous social and economic impact, detecting these viral memes at their early
stages of spread is a worthy, yet challenging problem. Here we review the literature
on predicting viral memes, and present empirical results from Twitter and Tumblr
datasets. We demonstrate how diffusion patterns of memes, in the context of net-
work communities, play an important role in predicting virality. We show that it
is feasible to obtain predictive features based on community structure even at the
massive scales that common social media services need to process. Our results may
not only enable practitioners to make predictions about meme diffusion, but also
help researchers understand how and why different factors, in particular diffusion
patterns in communities, affect online virality.

1 Introduction

A meme is a distinct piece of information that replicates among people, like biologi-
cal genes replicating through reproduction [1]. Memes resemble infectious diseases,
in the sense that both travel through social ties between people [2, 3]. As blooming
online social media services facilitate online social interactions, they also change
how memes spread through society. Most importantly, social media platforms such
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as Facebook, Google Plus, Twitter, and Tumblr connect billions of users into a net-
work that can spread a meme to the whole world instantly. At the same time, these
services allow us to directly observe and study the spreading of memes and user
behaviors by recording detailed data about user activities.

A vast number of memes is created every day. However, only a tiny fraction goes
viral. This raises the most fundamental question in information diffusion research:
what makes something viral? This question has attracted attention across disciplines
including marketing and advertisement, as well as machine learning and network
science. One shall agree that the question is meaningful but too broad. Here we
focus on a more specific and well-defined question: How can we predict the virality
of a meme early?

There are roughly two general approaches to the problem of meme virality
prediction: time series analysis and feature-based classification. What follows in
this chapter focuses on feature-based classification [4, 5, 6]. Readers who are in-
terested in the approach of time series analysis are referred to a different litera-
ture [7, 8, 9, 10]. The feature-based classification approach aims to discover distin-
guishing features of viral memes and to apply supervised machine learning tech-
niques using these features. As in standard feature-based machine learning prob-
lems, a general saying is garbage in, garbage out, implying that if inputs to a model
are not informative, its output will neither be meaningful. Therefore the most critical
step is to identify and extract useful features from datasets at hand.

We study a set of useful features from our theoretical and conceptual understand-
ing of network structure and social information diffusion processes. In particular,
we discuss the features of the diffusion patterns based on dense subgroups (com-
munities) in underlying networks. We will demonstrate that diffusion pattern can be
extracted at scale, which preserves its strength in virality prediction in two massive
datasets from Twitter and Tumblr.

2 What Makes It Viral?

Although we do not address this question directly, understanding the potential rea-
sons why memes go viral is nevertheless crucial for identifying useful features and
for any discussion about viral memes. From literature we identify three key aspects
of viral spreading, namely innate attractiveness of memes, user characteristics, and
properties of the underlying social network. Motivated readers are recommended to
query the references for more details on these aspects of virality.

2.1 Innate Attractiveness

The innate appeal of a meme may be the most basic factor contributing to its virality.
It is intuitive that users are more likely to reshare memes with better “quality”. Qual-
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ity can be defined in different contexts. For example, Berger and Milkman studied
the emotional constituents in news articles and their impact on the articles’ viral-
ity. They find that news articles that actively evoke arousal become more viral later
on [11]. Many studies presuppose virality as an intrinsic trait of memes. Since a
meme is represented by its content, it justifies the search for content features that
correlate with quality. For one, Guerini et al. characterized various aspects of viral-
ity and how they indicate the future virality of text-based content [12].

Although innate attractiveness is an intuitive explanation of virality, it does not
paint the whole picture. The attractiveness of a meme is highly dependent on many
contextual features, such as other existing memes and the culture of surrounding
population. Studies have also demonstrated that quality alone does not explain vi-
rality well. In fact, agent-based simulation showed that highly skewed distribution of
meme popularity can arise even if we do not assume any difference in innate quality
of memes [13]. Moreover, the success of online content, such as songs from online
music downloads and social news filtering, depends significantly on provided social
cues [14, 15]. This suggests that factors other than innate quality, such as visibility
and reachability of the memes, may as well contribute to virality.

2.2 User Characteristics

The importance of social influence leads us to the concept of influencers and the
roles of user characteristics in general. Although there are seemingly countless
memes available, the scarcity of user effort in consuming information leads to lim-
ited individual attention in any social networks. Similar to biological organisms
(and genes) striving for resources to reproduce, all memes strive for the attention
of people. Since user consumes meme at a limited rate, only the memes that are
seen within a short time period have a chance to propagate. Memes originating at an
isolated location in the social network may not have any chance to spread because
no one can see them in the first place. Such memes quickly go extinct in the system.
Meanwhile, a meme that happens to be reshared by a user with many followers will
have a significantly higher chance to reproduce across the followers’ minds.

When user B reads user A’s post, the likelihood of user B resharing the informa-
tion depends on his/her evaluation of user A. That is, the influence that one exerts
on others varies across the actors. Content by a well-respected celebrity such as a
founder of a famous organization naturally generates a stronger influence on others
than that by a normal person, despite that they are two copies of the same content.
In addition, each user has a specific set of topical interests. Some care more about
global politics and wars in the Middle-East, while others may only want to know
about new French recipes. Since users consume and share information according to
their own interests, it is more likely for meme to spread between users with sim-
ilar interests, when one shares and one consumes closely relevant contents. These
effects are further exacerbated by a combination of limited user attention and abun-
dant supply of memes. Weng et al. showed that limited individual attention in the
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competition among memes induces strong heterogeneity in meme popularity and
longevity [13]. In deciding which meme to consume, each user prioritizes based on
their interests and this alters meme popularity [16].

In other words, the spreading of viral memes favors users of specific characteris-
tics. We call them influential users. Many methods have been proposed for quantify-
ing user influence and identifying these influential users. In general, these methods
use relevent observables of user characteristics, such as high degree or retweetabil-
ity [17, 18], topical similarity [19, 20, 21], information forwarding activity [22, 18],
or size of cascades [23, 24], to infer the strength of user influence over other.

2.3 Properties of Underlying Social Network

The characteristics of social ties in the underlying social network, through which
memes spread, also affect the success of memes. Strong and homophilous ties are
considered more effective than weak ties for spreading messages [25], while weak
ties are thought of as transmitting novel information [26]. These theories are com-
monly used in viral marketing and consumer studies, where researchers actively
apply network approaches to analyze and model local and global patterns of social
network structure [27, 28, 29]. In addition, the existence of hubs, namely nodes with
extremely large degree, is known to affect the persistence of infections, the distribu-
tion of cascade sizes, and the vulnerability of the system [30, 31]. Intuitively, hubs
provide pathways through which memes can teleport to distant parts of the network
instantly, facilitating the development of meme popularity on the whole network.

Another important network structure feature in most social networks is the pres-
ence of dense subgraphs called communities [32, 33, 34, 35]. Communities are
characterized by internal cohesion (more internal edges than expected) and exter-
nal isolation (fewer outgoing edges than expected). While communities naturally
contraints information flow across their borders, they may be necessary for provid-
ing initial critical mass before a meme can spread broadly [36]. In addition, the
theory of complex contagion [37, 38, 39, 40, 41] suggests that we may expect an
even stronger constraining effect from community structure [4]. Therefore, informa-
tion extracted from the network structure and early spreading patterns is valuable to
predict the virality of a meme. Further discussion on extracting features from com-
munity structures of social networks follows in a later section.

3 Data and Methods

In this section we present details of the datasets used in our experiments, and explain
the methods we applied to extract network communities and to predict virality. We
begin with a brief introduction to the online social media platforms from which
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our data was collected, and the networks that we constructed using each of these
platforms.

3.1 Social Media Platforms

Online social media platforms enable people to share information and subscribe to
updates from other users. The information can be of any type, ranging from short
text messages and blog posts, to images and video clips. On these platforms, users
typically choose others to whom they pay attention by ‘following’ them. Most plat-
forms also provide users with multiple mechanisms of information sharing, which
serve different purposes.

Twitter is one of the most popular social media platforms. On Twitter, users post
short messages called tweets. Between a pair of users (u,v), we consider three main
types of interactions: (i) u can follow v to subscribe to tweets from v; (ii) u can
retweet v’s messages to re-broadcast them to u’s followers; and (iii) u can mention
v’s screen name in tweets by using the “@” symbol (e.g., ‘@potus’). Users can also
explicitly attach indexable topic identifiers to a tweet by using hashtags, terms with
the “#” symbol as a prefix (e.g., #news).

Tumblr is another popular social networking and microblogging platform sup-
ported by Yahoo! since 2013, hosting hundreds of millions of monthly active users
and blogs. Tumblr features many functions similar to Twitter, such as hashtags, re-
sharing, liking, and replies.

On both Twitter and Tumblr, hashtags can be used to operationalize the concept
of memes, thanks to multiple characteristics of hashtags that accord with the defi-
nition of a meme [1]. First, hashtags are concretely defined by user consensus and
uniquely identifable through searches; second, hashtags reproduce through imita-
tion by users; third, hashtags mutate, compete, and dominate in the same system
over time. For example, #ows rapidly suppressed several similar hashtags to be-
come the reference label for the Occupy Wall Street movement among hundreds of
thousands of people who participated in related public discourse [42]. The usage of
hashtags also makes the application of our methods straightforward and our findings
easily comparable to results based on other platforms.

3.2 Community Detection

Communities contain rich information about the structure of a social network. These
communities can be extracted by applying different algorithms. The results in this
chapter are based on communities detected by two methods, namely InfoMap [33]
and Louvain’s method [43]. We have chosen these two methods, based on contrast-
ing principles, to evaluate the robustness of the results under different choices of
community detection algorithm. InfoMap and Louvain’s method optimize for dif-
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ferent objective functions and are therefore expected to produce distinct results, par-
ticularly regarding community size and resolution [44]. Another difference is that
InfoMap considers the direction of edges, while Louvain’s method treats all edges as
undirected. Therefore the results may provide insight about the usefulness of edge
directionality as signals for virality prediction.

Nowadays, the sizes of online social networks and the volume of information
traffic on them is so large that analysis requires distributed storage and computing
environments. Algorithms running on single computers do not scale well to such
large networks, say with tens of million nodes. Additionally, moving large volumes
of data stored on different storage nodes to a single machine is costly. Although
the original implementations of the InfoMap and Louvain’s algorithms were not
designed for parallel computation, distributed implementations of these algorithms
have been developed to better utilize resources in multiple-machine clusters. These
scalable methods optimize execution speed and resource efficiency without sacrific-
ing accuracy. We use distributed Louvain [45] and RelaxMap [46], parallel imple-
mentations of Louvain’s and InfoMap methods respectively, to extract communities
from large Twitter and Tumblr networks.

3.3 Twitter Information-Sharing Network

In prior work, virality was predicted using community features extracted from a
Twitter follower network [5]. While constructing such a follower network is desir-
able, it poses some challenges. Some social media platforms, such as Facebook,
regard friendship data as private, and therefore do not make it available for research.
Furthermore. collecting complete follower information among many users can be
forbiddingly expensive. The APIs provided by popular online social platforms re-
strict the rate at which such data can be queried without payment, making even
moderate-size experiment difficult. This motivates an alternative approach.

We can extract communities based on an information-sharing network rather
than a follower network. The links in such a network represent how memes spread
through, e.g., retweets and replies. This can be used as a proxy for the social net-
work that captures the process of meme diffusion. Since people typically retweet
messages from users they follow, an information-sharing network has a significant
overlap with the follower network. Let us consider two networks constructed in this
fashion, using high-volume streams of Twitter and Tumblr posts.

In our experiment, the Twitter information-sharing network is constructed using
a 10% sample of public tweet stream. The tweets used in our study are from July to
September 2015 (Table 1). We divide the collected tweets into two temporal parts:
a one-month observation period followed by a two-month experiment period.

In the observation period we collect existing hashtags and information-sharing
activities. These activities are used to construct a directed information-sharing net-
work. Each edge in the network is formed by retweets and mentions of one user
by another, and is weighted by the frequency of information flow from source to
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destination user. When user A is retweeted by user B, or when user A mentions
user B, information flows from A to B. Communities in this network are extracted
by RelaxMap and Louvain’s algorithms. To reduce noise, only the largest weakly-
connected component of network is used in community detection.

In the experiment period, we consider only newly-born hashtags, which did not
occur in the observation period. Each new hashtags is tracked for a period of thirty
days, starting from its first occurrence. If a hashtag first occurs within thirty days of
the end of the experiment period, so that we do not have thirty days of data in the
experiment period, we do not consider it in our study. For each tracked hashtag, we
record the sequence of users who share it (adopters).

This setup has some desirable properties. Since the networks are constructed
using only information from the observation period and evaluation is done strictly
over content in the experiment period, there is no information leak between training
and evaluation. Moreover, every hashtag in the evaluation is observed for exactly
thirty days after its first use, avoiding a bias against late hashtags.

In summary, tweets from the observation period are used to construct the directed
network from which communities are extracted. The experiment period is used to
construct meme adoption histories and run the prediction experiments.

3.4 Tumblr Information-Sharing Network

We also collected posts from the Tumblr firehose, a database with the complete his-
tory of user posts. On Tumblr, a user can create and own multiple blogs with one
account. Tumblr identifies the same user posting in distinct blogs as different per-
sona. However, each user is identified by one primary blog while reacting to posts
from other users, such as when replying and liking posts. Therefore we consider a
user’s primary blog as their identity. We focus on text posts, excluding other types
of content such as pictures and video clips.

We divided this dataset the same way we did for the Twitter network (Table 1).
A directed network is constructed by scanning all text posts in November 2015
(the observation period), and its largest weekly connected component is used to
extract communities. An edge is generated when a user likes or replies to a post by
another user, and edges are weighted by the frequencies of interaction. Edges are
directed from user A to user B when B likes or replies to posts by A. Text posts in
December 2015 and January 2016 (the experiment period) were collected to run the
predictions.

The Tumblr dataset contains a very diverse set of hashtags. Tumblr hashtags are
case sensitive, can contain spaces and emoji, and have no length limit. As a result,
they can be very long (full sentences) and have duplication, for instance “Cute cat”
and “cute cat.” To limit the noise caused from these degenerate cases, we filtered
out hashtags that are longer than twenty characters and trimmed all emoji, common
phrase separators (space, underscore, etc.) and repeated expressions, then lower-
cased all characters.
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Twitter Tumblr
Type of edge Retweets & mentions Replies & likes
Observation period 2015-07 2015-11
Experiment period 2015-08/09 2015-12/2016-01
# Nodes 29,224,842 19,701,097
# Edges 169,685,133 711,573,645

Table 1 Information and basic statistics about the network datasets in the study.

4 Network Community Features

In this section we present the features extracted from the networks. The features are
a subset of the ones used in our prior work [5]. In particular, we focus on features that
are motivated by the community structure of the underlying social networks. These
network features are computed based on the locations of the first n adopters of each
hashtag, where the parameter n is set to be a relatively small number compared to
the final number of tweets generated by viral hashtags. In our experiment, n = 25.

Let us start by defining a few key concepts and mathematical notations. Some of
the information is mentioned in previous sections, but is included below for the sake
of completeness.

Definition 1. Meme: We consider each hashtag h as a meme. The popularity of
meme h is quantified by the number of adopters. A(h) is the set of all adopters who
posted about h and An(h)⊆ A(h) is the set of early adopters who posted at least one
of the first n posts. We define the popularity of h as |A(h)|.

Definition 2. Adopter sequence: For a given meme h, we consider the sequence
of meme adopters, 〈ah

1,a
h
2, . . . ,a

h
n〉, where ah

i ∈ A(h) is the creator of the i-th post
containing h. A user may appear multiple times in the sequence if the user posts
about h more than once.

Definition 3. Community: A community c ∈ C is a dense subgraph of nodes
(users) in the network. Given information about which nodes belong to which com-
munities, A(h|c) is the set of adopters of a meme h in community c. An(h|c) is the
similar set that only considers the first n relevant tweets. C(h) denotes the infected
communities of h, which are communities with at least one tweet containing h. Sim-
ilarly, the infected communities with early posts are Cn(h).

Community structure is useful in predicting meme virality because of how
memes travel among users who are socially connected. This process is commonly
called social contagion. It has been argued that social contagions are complex con-
tagions, in contrast to simple contagions like epidemic spreading. To explain the
connection between complex contagion and community structure in the context of
social network analysis, we note that complex contagion is known to possess two
distinctive characteristics:
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Social reinforcement. Until a certain point, each additional exposure drastically
increases the probability of adoption [47, 48, 49].

Homophily. Social relationships are more likely to be formed between people who
share certain characteristics, captured in the sayings “birds of a feather flock
together” and “similarity breeds connection” [50, 51].

Community structure has been shown to help quantify the strength of both social
reinforcement and homophily by the following mechanisms [4]. First, dense con-
nectivity inside a community increases the chances of multiple exposures, thus en-
hancing the contagion that is sensitive to social reinforcement. Second, groups with
similar tastes naturally establish more edges among them, forming communities.
Therefore members of the same community are more likely to share similar inter-
ests. We thus expect that, if these two effects are strong, communities will facilitate
the internal circulation of memes while preventing diffusion across communities,
causing strong concentration or low community diversity.

Unpopular memes tend to be concentrated in a small number of communities,
while a few viral memes have high community diversity, spreading widely across
communities like epidemic outbreaks [4]. This can be explained by trapping of in-
formation flow in communities. Viral memes are able to breach the borders of com-
munities and out-survive other memes. Therefore, features that quantify the com-
munity diversity should help predict future meme virality. As an illustration, Fig. 1
is a visualization of the early diffusion patterns of a few memes based on the first
30 tweets, #TheWorseFeeling and #IAdmit clearly exhibit more community
diversity than non-viral memes, e.g. #ProperBand and #FollowFool.

Based on the above analysis, we define a key feature of diffusion patterns based
on community structure as follows:

Definition 4. Adopter entropy, HA
n (h). The measurement of entropy describes how

adopters of a given meme are scattered or concentrated across communities. Large
entropy indicates low concentration or high diffusion diversity:

HA
n (h) =− ∑

c∈C(h)

|An(h|c)|
|An(h)|

log
|An(h|c)|
|An(h)|

.

5 Experiment

Let us present the details of our experiment on virality prediction using the diffusion
features extracted from the network community structure. We first define a virality
prediction task. We will show that diffusion diversity is a strong predictor of virality.
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(c) #ProperBand

(a) #TheWorseFeeling (b) #IAdmit

(d) #FollowFool

Fig. 1 Visualizations of diffusion patterns of viral (a,b) and non-viral (c,d) memes on Twitter.
Early adopters among the first 30 tweets (in blue) and their neighbors in the same communities
are shown. Each node represents a user and each link indicates the reciprocal follow relationship
between two users. Figure reproduced with permission [5].

5.1 Task Specification

Each new hashtag is associated with a series of adopters within the experiment pe-
riod. We only compute features using the positions of the first n = 25 adopters in the
network. Our method therefore requires that a new hashtag has been used at least 25
times within the experiment period.

Meme popularity exhibits a broad and skewed distribution, as observed in many
previous studies [52, 13]. Our key questions are whether the diffusion diversity fea-
ture based on community structure provides a predictive signal, and whether this
signal is informative at the large scales of our information-sharing networks. The
following recipe defines a meme virality prediction task:

1. Each hashtag is given either viral (1) or not (0) as its ground-truth class; the most-
frequent 50% of the inspected hashtags within a month of usage are defined as
viral.

2. All hashtags are ranked by adopter entropy HA
n (h), from the highest to the lowest.

3. The top 50% of hashtags based on the ranking in step 2 are predicted as viral.
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Twitter Tumblr
RelaxMap 0.67 0.60
D-Louvain 0.68 0.60

Table 2 Prediction accuracy (AUC) from evaluation on each of the datasets.

4. Receiver Operating Characteristic (ROC) curve and the corresponding Area Un-
der the Curve (AUC) are used to evaluate prediction accuracy.

We note that this balanced binary classification task is simpler than the more
realistic scenario in which only a small fraction of memes go viral.

ROC curves are drawn by first ranking the scores of the hashtags, then evaluating
each sample point as a true positive or false positive in the ranked order. If the true
positive data points are among the top ranks, the curve will bounce up, hence the
AUC will be close to one. On the other hand, if false positive sample points are
ranked high, the AUC will be close to zero. A random ranking will spread true and
false positives evenly, and therefore yield an AUC close to 0.5.

5.2 Evaluation

The ROC curves in Figure 2 and AUC values in Table 2 show that community
entropy of adopters HA

n (h) alone provides a useful signal in predicting which memes
will go viral in large-scale social media. The AUC values around 0.7 and 0.6 for
Twitter and Tumblr networks, respectively, represent significant improvements upon
the random baseline. Naturally, the results could be improved further by combining
entropy with other features in the literature [5, 6].

The RelaxMap and distributed Louvain’s methods perform similarly on the same
data. Recall that Louvain’s method ignores the direction of edges, while RelaxMap
does not — InfoMap is based on directed random walks. To investigate the con-
tribution of edge directionality, we ran RelaxMap on an undirected version of the
Twitter information-sharing network. This was done by adding weights for recip-
rocal edges, similarly to the way this is done in the distributed implementation of
Louvain’s method. The resulting AUC is not significantly different from the random
baseline. This suggests that RelaxMap makes use of both weights and directionality
of the edges while extracting communities, and this affects the signal we use for
virality prediction.

The diffusion patterns are informative in the prediction task on both Twitter and
Tumblr platforms. Despite the simplicity of the task, the results of our evaluation
demonstrate that for meme virality prediction, diffusion patterns are robust against
source platforms and network construction, and scale up to very large networks.

Compared to Twitter, virality prediction in Tumblr seems to be much more chal-
lenging. The difficulty may be attributed to different ways in which the platform
is used and the data is collected. First, hashtags on Tumblr tend to be used dif-
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Fig. 2 A plot of ROC curves using diffusion diversity (adopter entropy) as the ranking criterion.
Different curves correspond to different information-sharing networks and community detection
algorithms.

ferently due to the lack of strong limitations on the set of characters. People use
hashtags with more characters and diverse types of expression styles, such as irony
and sarcasm. As the possible space of hashtags grows, it becomes less clear if the
assumption of hashtags as proxies of memes is appropriate. Further, unlike Twitter,
Tumblr encourages users to create blog posts without length limitation, giving rise
to distinct meme consumption and diffusion patterns.

Another potential difference between the two platforms is the sampling of posts
in the Twitter stream, which is biased toward active users who are responsible for
most of the tweets. The Tumblr firehose includes barely active and less predictable
users.
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6 Conclusion

In this chapter, we explore the question of virality of online content and its predic-
tion on large social media platforms. We summarize three perspectives on driving
factors of virality — innate attractiveness of the content, user characteristics, and the
network structure of the underlying social network. We present a simple, yet effec-
tive community feature that captures the diffusion patterns of memes in the network.
We show that the communities, from which the entropy feature is derived, can be
extracted in large-scale information-sharing networks such as Twitter and Tumblr.
We also find that diffusion diversity provides a predictive signal across platforms.

There are multiple future directions for this line of research. A noteworthy chal-
lenge in deploying the methods in any real-time system is the computational com-
plexity of updating the required features as the social network evolves. Although
community structures can be assumed to be fairly stable over time, it is unclear for
how long this assumption of static network holds. Consensus clustering [53] could
be applied to explore this question.

Another potential direction is to investigate the effect of groups with different
characteristics, for instance cultures, religions, and genders, on meme consumption.
There has been little work on feature-based models that are aware of group-level
characteristics. One can imagine that a meme will gain attention in a particular group
while being ignored in others. If early adopters of the meme are in relevant groups
of users who are motivated to share it, the meme is more likely to go viral. Such
content-aware approach, accompanied with powerful community features, may lead
to the development of more powerful prediction algorithms.
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