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Network community detection via neural
embeddings

Sadamori Kojaku 1,2, Filippo Radicchi2, Yong-Yeol Ahn 2 & Santo Fortunato2

Recent advances inmachine learning research have produced powerful neural
graph embedding methods, which learn useful, low-dimensional vector
representations of network data. These neural methods for graph embedding
excel in graph machine learning tasks and are now widely adopted. However,
how and why these methods work—particularly how network structure gets
encoded in the embedding—remain largely unexplained. Here, we show that
node2vec—shallow, linear neural network—encodes communities into separ-
able clusters better than random partitioning down to the information-
theoretic detectability limit for the stochastic blockmodels. We show that this
is due to the equivalence between the embedding learned by node2vec and
the spectral embedding via the eigenvectors of the symmetric normalized
Laplacianmatrix. Numerical simulations demonstrate that node2vec is capable
of learning communities on sparse graphs generated by the stochastic
blockmodel, as well as on sparse degree-heterogeneous networks. Our results
highlight the features of graph neural networks that enable them to separate
communities in the embedding space.

Networks represent the structure of complex systems as sets of nodes
connected by edges1–3 and are ubiquitous across diverse domains,
including social sciences4,5, transportation6,7, finance8,9, science of
science10,11, neuroscience12,13, and biology14–16. Networks are complex,
high-dimensional, and discrete objects, making it highly non-trivial to
obtain useful representations of their structure. For instance, recom-
mendation systems for social networks typically require informative
variables (or “features”) that capture the most important structural
characteristics. Often, these features are designed through trial and
error, and may not be generalizable across networks.

Graph embeddings automatically identify useful structural fea-
tures for network elements, most commonly for the nodes17,18. Each
node is represented as a point in a compact and continuous vector
space. Such a vector representation enables the direct application of
powerful machine learning methods, capable of solving various tasks,
such as visualization19,20, clustering21,22, and prediction18,23,24. This
representation can facilitate the operationalization of abstract con-
cepts using vectorial operations20,25–28. Graph embeddings have been
studied in various contexts. For example, spectral embedding stems

from the spectral analysis of networks17,29. A closely related formula-
tion is matrix factorization30,31. Recent years have witnessed a sub-
stantial shift towards a new paradigm of graph embeddings based on
neural networks20,22,32–40, which have demonstrated remarkable effec-
tiveness acrossmany computational tasks23,34,35,38,39,39,40. Yet, due to the
inherent black-box nature of neural networks, how and why these
methodswork is still largely unknown;we lack a clearunderstandingof
the process of encoding certain network structures onto embeddings.

One of the fundamental and ubiquitous features of networks is
community structure, i.e., the existence of cohesive groups of nodes,
characterizedbyadensity ofwithin-groupedges that is higher than the
density of edges between them41–43. In practice, neural graph embed-
ding methods are widely used to discover communities from
networks26,31,34,38.

The stochastic block model (SBM) is a basic generative model of
networks with community structure44,45 and is regularly used as a
benchmark for community detection algorithms. Some community
detection methods are able to correctly classify all nodes into com-
munities in large and dense networks generated by the SBM, provided
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that the average degree increases as the number of nodes
increases21,46–50. However, most networks of interest in applications are
sparse1,51, in that their average degree is usually much smaller than the
network size. The task of community detection is particularly hard on
sparse networks. For instance, the performance of many spectral
methods significantly worsens as the graph gets sparser52,53, which has
led to the development of remedies such as non-backtracking
walks52–54 and consensus clustering55. However, it remains unclear
howneural graph embeddings performon sparsenetworks, howmuch
edge sparsity hampers their ability to detect communities, and how
they fare for traditional clustering techniques, especially spectral
methods.

Here, we prove that graph embedding methods based on a shal-
low neural networkwithout non-linear activation—such as DeepWalk38,
LINE39, and node2vec34—can resolve communities all the way down to
the information-theoretical limit on graphs generated by the SBM56.
Our results imply that two common components of deep learning—
multiple deep layers and non-linear activation—are not necessary to
achieve the optimal limit of community detectability. Numerical
experiments demonstrate that the communities embedded by
node2vec can be effectively identified by the K-means algorithm, with
accuracy close to the performance of the optimal belief propagation
(BP)method56 when the true number of communities is given to the K-
means and BP. Additional numerical tests reveal that node2vec is also
able to learn communities in the presence of heterogeneity of degree
and community size. In this case, the two-step approach, combining
embedding and clustering, is underperforming in certain settings, but
this may be due to the fact that K-means clustering struggles when
clusters have widely different sizes. We expect that addressing this
shortcoming of K-means would lead to much better results.

Our work might help to inform powerful community detection
algorithms and improve our theoretical understanding of clustering
via neural embeddings. The code to reproduce all the results is avail-
able at ref. 57.

Results
Planted partition model
We first consider the standard setting studied in papers concerning
community detectability52,53,58. We focus on undirected and unweigh-
ted networks with community structure generated according to the
plantedpartitionmodel (PPM)59, a special caseof the SBMwherenodes
are divided into q equal-sized communities, and two nodes are con-
nected with probability pin if they are in the same community and with
probability pout if they are in different communities. We assume that
the networks are sparse, i.e., pin and pout are inversely proportional to
the number n of nodes. The average degree 〈k〉 and the ratio of edge
probabilities pin/pout do not depend on n. We specify the edge prob-
abilities via the mixing parameter μ = npout/〈k〉. The mixing parameter
indicates how blended communities are with each other. As μ → 0,
communities arewell separated and easily detectable. For larger values
of μ, community detection becomes harder. For μ = 1, which corre-
sponds to pin = pout, the network is an Erdős-Rényi random graph and,
as such, has no community structure. We note that the mixing para-
meter μ is slightly different from the traditional mixing parameter μLFR
used in the Lancichinetti-Fortunato-Radicchi (LFR) benchmark, which
is defined as μLFR = ð1� 1

qÞnpout=hki. The difference between μ and μLFR
is negligible for large q.

Detectability limit of communities
The goal of community detection in the PPM is to recover the block
membership of the model based on the structure of the specific net-
works generated by it. When communities are well separated, an
algorithm is likely to recover these communities perfectly.However, as
the number of inter-community edges increases, thereby reducing the
difference between the densities of inter-community and intra-

community edges, the algorithm may fail to correctly classify some
nodes, and eventually, communities cannot be detected better than
random guessing. The level of community mixing above which no
algorithm can recover communities better than random guessing is
the information-theoretic detectability limit56,58.

Operationally, with the PPM, the level ofmixing is quantified by μ.
Communities arepresent for allμ-values in the range [0, 1), because the
edges are more densely distributed within communities than between
them. In the regime above the information-theoretical limit (i.e.,
μ∗ ≤ μ < 1), communities are not detectable because their inter-com-
munity/intra-community edge densities are indistinguishable from the
corresponding edge densities of random partitions.

Detectability limit of node2vec
We first give a high-level description of our derivation of the algo-
rithmic detectability limit for node2vec. We note that our derivation
can be directly applied to other neural graph embeddings, such as
DeepWalk38 and LINE39. See the Methods section for the step-by-step
derivations.

Our analysis is based on the fact that node2vec generates its
embedding by effectively factorizing a matrix when the number of
dimensions is sufficiently large30. This insight enables us to study
node2vec as a spectral method (see Methods). Spectral algorithms
identify communities by computing the eigenvectors associated with
the largest or smallest eigenvalues of a reference operator, such as the
combinatorial and normalized Laplacian matrices. When using eigen-
vectors to represent the network in vector space, nodes in the same
community are projectedontopoints in space lying close to eachother
so that a data clustering algorithm can separate them17.

The existence of such localized eigenvectors can be inferred by
analyzing the spectrumof the reference operator using randommatrix
theory. For instance, this approach has been applied to determine the
detectability limit of the normalized Laplacianmatrix generated by the
PPM60. We find that, under some mild conditions, the spectrum of the
node2vec matrix is equivalent to that of the normalized Laplacian
matrix. Hence, the detectability limit of node2vec matches that of the
spectral embedding with the normalized Laplacian matrix60:

μ*
n2v =μ

* = 1� 1ffiffiffiffiffiffiffi
hki

p : ð1Þ

See Supporting Information Section 2 for the expression of the
detectability limit in terms of the mixing parameter μ. This threshold
exactly corresponds to the information-theoretical detectability
limit μ∗ of the PPM55,58. In other words, node2vec has the ability to
detect communities down to the information-theoretic limit in
principle. However, like in the case of spectral modularity
maximization58, our analysis is only valid when the average degree
is sufficiently large. Nevertheless, as we shall see, our numerical
simulations show that node2vec performs well even if the average
degree is small.

Experiment setup
As baselines, we use two spectral embedding methods whose detect-
ability limit matches the information-theoretical one: spectral mod-
ularity maximization58 and the spectral embedding based on the
normalized Laplacian matrix (Laplacian EigenMap)61. In addition, we
use two other neural embeddings, DeepWalk38 and LINE39. DeepWalk
and LINE share the same architecture as node2vec but are trained with
different objective functions30,62. Furthermore, we employ the spectral
algorithm based on the leading eigenvectors of the non-backtracking
matrix, which reaches the information-theoretical limit even in the
sparse case for networks generated by the PPM52. For all embedding
methods, we set the number of dimensions, C, to 64. Finally, we
employ two community detection algorithms: statistical inference of

Article https://doi.org/10.1038/s41467-024-52355-w

Nature Communications |         (2024) 15:9446 2

www.nature.com/naturecommunications


the microscopic degree-corrected SBM44, and the BP algorithm56. The
BP algorithm is theoretically optimal for PPM networks and serves as
an ideal baseline for assessing graph embeddings. However, achieving
optimal performance with BP in practice requires non-trivial para-
meter tuning. Therefore, we initialized the BP using the information
about the true communities, namely the number of nodes in each true
community and the number of edges between the communities.
See Supporting Information Section 4 for the parameter choices of the
models and the implementations we used.

Community detection via graph embedding is a two-step process:
• First, the network is embedded,which yields a projection of nodes
onto points in a vector space.

• Second, the points are divided into groups using a data clustering
method (e.g., K-means clustering).

Thus, the performance of community detection depends on
both the quality of the embedding and the performance of the
subsequent data clustering procedure. We use the K-means cluster-
ing algorithm in the second step. We set the number of clusters to
the number of true communities, run the K-means algorithm 10 times
with different random seeds, and select the best clustering in terms
of the objective of the K-means algorithm (i.e., the mean squared
distance between the nodes and their assigned cluster centroids).
Additionally, we also test an alternative data clustering method,
Voronoi clustering, which assigns each node to the cluster with the
closest centroid in the embedding space, with the cluster centroids
being the ones of the true communities. Because the Voronoi clus-
tering method has access to additional information about the loca-
tions of true communities, it provides the best-case scenario for the
K-means algorithm. The results for Voronoi clustering are presented
in the Supporting Information 7.

We assess the performance by comparing the similarity between
the planted partition of the network and the detected partition of the
algorithm.We used the element-centric similarity63, denoted by S, with
an adjustment such that a random shuffling of the community mem-
berships for the two partitions yields S =0 on expectation (See Sup-
porting Information Section 1). This way, for planted divisions into
equal-sized communities, S =0 represents the baseline performance of
the trivial algorithm, while S >0 indicates that communities are
detectable by the given algorithm.

Simulations: PPM
We test the graph embedding and community detection algorithmson
networks of n = 100,000 nodes generated by the PPM, with q∈ {2, 50}
communities of equal size and average degree 〈k〉 ∈ {5, 10, 50} (Fig. 1).
Spectral methods find communities better than random guessing
below the detectability limit μ∗, i.e., S >0, for μ < μ∗ and 〈k〉 = 50
(Fig. 1C, F). However, their performance is much worse when the
average degree is small (〈k〉 = 5, Fig. 1A, D). For example, Laplacian
EigenMap falls short below the detectability limit (μ < μ∗), despite
having the optimal detectability limit when the average degree is suf-
ficiently large64. All techniques, including BP that is supposed to be
optimal for sparse networks, fail the exact recovery of the clusters for
sparse networks even if the value of μ is low (〈k〉 = 5, Fig. 1A, D).We find
that misclassifications are inevitable for these highly sparse networks
because some nodes end up being connected with other communities
more densely than with their own community by random chance.
Notably, the poor performance of the BP algorithm ismainly observed
in the networks with 50 communities (q = 50; Fig. 1F), where the pre-
valence of many local minima may exacerbate the limitations of
the greedy optimization used to optimize the objective of the BP
algorithm.

Fig. 1 | Performance of community detection methods on PPM networks.
We generated networks with n = 105 nodes, different edge sparsity (〈k〉 = 5 in (A,D),
〈k〉 = 10 in (B, E), 〈k〉 = 50 in (C, F), and the different number of communities (q = 2
for A–C and q = 50 for D–F). The dashed vertical line indicates the theoretical
detectability limit μ∗ given by (1): communities are detectable (i.e., S >0), in prin-
ciple, below μ∗. Spectral embedding methods detect communities up to the theo-
retical limit for dense networks (C, F), supporting the detectability limit derived
fromprevious studies58,60. However, for sparse networks, they fall short even at low

μ-values (A, D). node2vec and the spectral embedding based on the non-
backtracking matrix outperform other spectral methods, with the performance
curves close to that of the BP algorithm. Note that even the BP algorithm falls short
of the exact recovery of some easily detectable communities in the case of q = 50
communities, with the initial parameters set according to the ground-truth com-
munities. The error bands represent the 90% confidence interval by a boot-
strapping with 104 resample.
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On the other hand, node2vec is substantially better than the
spectral methods, and its performance is the closest to that of the BP
algorithm for sparse networks (Fig. 1A, D). The results are striking,
given that the K-means algorithm can significantly worsen the perfor-
mance of node2vec. Crucially, the information-theoretical limit of
community detectability sharply separates the detectable and unde-
tectable regime of communities for node2vec, demonstrating the
validity of our theoretical result. node2vec consistently achieves a
good performance across different numbers of communities and dif-
ferent network sparsity. Furthermore, node2vec performs well even if
we reduce the embedding dimension C from 64 to 16, which is smaller
than the number of communities in the caseswhereq = 50 (Supporting
Information Section 5). We also confirmed that the effectiveness of
node2vec is robust for different sets of hyperparameter values (Sup-
porting Information Section 6).

Simulations: LFR benchmark
The PPM is a stylized model that lacks key characteristics of empirical
community structure. We test the graph embedding using more rea-
listic networks generated by the LFR model65, which produces net-
works with heterogeneous degree and community-size distributions,
to assess the performance of the methods in a more practical context.
Unlike the PPM, however, the theoretical detectability limit of com-
munities in LFR networks is not known. We build the LFR networks by
using the following parameter values: number of nodes n = 10,000,
degree exponent τ1∈ {2.1, 3}, average degree 〈k〉∈ {5, 10, 50}, max-
imum degree

ffiffiffiffiffiffiffiffi
10n

p
, community-size exponent τ2 = 1, community-size

range ½50,
ffiffiffiffiffiffiffiffi
10n

p
�.

In LFR networks, the BP algorithm and the non-backtracking
embedding—which have an excellent performance on the PPM net-
works, at least in theory—underperform noticeably (Fig. 2), suggesting

that optimal methods for the standard PPM may not perform well in
practice. The underperformance is likely due to the violation of the
assumption in the BP algorithm that loops are negligible in the net-
work. Even if the network is highly sparse, loops are likely to be formed
when the degree distribution is highly heterogeneous66,67. As a result,
the BP falls short of the LFR networks. node2vec struggled to recover
the planted communities perfectly, even when they were well sepa-
rated, as previously noted22. We note that the substandard perfor-
mance of node2vec on the LFR networks may be attributed to the
heterogeneity in community sizes, as the K-means algorithm tends to
detect communities of nearly equal sizes68 (Fig. 2A, B). In fact, when the
Voronoi clustering method is used, the performance of node2vec is
significantly improved, suggesting that the substandard performance
of node2vec is attributed to the clustering algorithm, not to the
embedding itself. Laplacian EigenMap outperformed other methods,
except in extremely sparse networks (Fig. 2A, B). It is worth noting that
Laplacian EigenMap is highly sensitive to the number of dimensions.
When the number of dimensions is set to 16, Laplacian EigenMap
underperforms considerably. On the other hand, node2vec con-
sistently performs well even across different number of dimensions
(Supporting Information Section 7). Even with the smaller embedding
dimension C = 16, node2vec performs comparably well with the flat
SBM (Supporting Information Section 5). We also confirmed that the
effectiveness of node2vec is robust for different sets of hyperpara-
meter values (Supporting Information 6).

Empirical networks
We evaluated graph embeddingmethods using six empirical networks
from various domains. Since communities in empirical networks are
unknown, we relied on node metadata labels to define community
memberships. We note that node attributes do not necessarily align

Fig. 2 | Performance of community detection methods on the LFR benchmark
networks, as a function of themixing parameter μ.We generated networks with
n = 104 nodeswith different edge sparsity (〈k〉 = 5 inA,D, 〈k〉 = 10 in (B, E), 〈k〉 = 50 in
C, F). The degree exponent τ1 = 2.1 in A–C, and τ1 = 3 inD–F. node2vec consistently
performs well across different sparsity regimes for most μ-values, with a larger

margin for sparser networks. The BP algorithm, which is provably optimal for
networks generated by the PPM, fails to identify some easily detectable commu-
nities, even with the initial parameters set according to the ground-truth commu-
nities. The error bands represent the 90% confidence interval by a bootstrapping
with 104 resample.
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with the detected structural communities, hence community detec-
tion methods may fail to identify the node groups based on node
attributes69,70. Keeping this potential issue in mind, we focus on the
following networks,where node attributes align relativelywell with the
community structures, to shed light on the practical performance of
graph embedding methods. Political blog network represents
hyperlinks between U.S. political blogs related to the 2004 U.S. pre-
sidential election71. The network consists of 1222 nodes (blogs) and
16,714 edges, where an edge represents a citation from one blog to
another on its front page. As the communitymembership of the blogs,
we use the blogcategorization into liberal or conservative identifiedby
an automated classification from several weblog directories. World-
wide airport network consists of 2939 nodes representing airports
in the world and 15,677 edges representing direct scheduled flights
between the airports72. As the communitymembership of the airports,
we use the geographical classification into four regions (Africa,
Americas, Asia & Oceania, and Europe). Cora citation network
consists of 2708 scientific publications and 5429 citations among the
publications73. As the community membership of the publications, we
use the scientific field classification into seven fields of study (com-
puter science, mathematics, physics, statistics, engineering, materials
science, and medicine). Football network represents American
football games between Division IA colleges during regular season Fall
2000. The nodes represent football teams, and the edges represent
the matches between the two teams. Each team belongs to one of 12
conferences, and we use the conference classification as the commu-
nity membership74. Political book network represents a network
of books on US politics published around the time of the 2004 pre-
sidential election. Each node represents a book, and two books are
connected if they are frequently copurchasedby the samebuyers75.We
use the political leaning of the books as the community membership.
High-school network represents a contact network of students in a
high school in Marseilles, France. Each node represents a student and
an edge between two students indicates a contact between them

during 4 days in Dec. 201176. The community membership of the stu-
dents is the year of their high school entrance.

We consider a scenariowhere the number q of communities is not
known. We estimate q by using the silouette score77. Specifically, we
identify the clusters with the K-means algorithm, by imposing a num-
ber of clusters q going from2 to 20, and choose the value of qwith the
highest silouette score.We use the sameparameter set to generate the
embeddings and identify the communities. We run the whole process
of community detection—from graph embedding, the estimation of
the number of communities, and clustering—10 times with different
random seeds, and report the agreement between the ground-truth
communities and the detected communities in terms of the element-
centric similarity for each run (Fig. 3).

node2vec and DeepWalk performed the best in four out of the six
networks (Political Blog, Airport, Cora Citation, Political
Books), and at least on par with the top-performing method in High
School, suggesting that they performed consistently well across dif-
ferent networks (Fig. 3). Another neural embedding method—LINE—
performed similarly with node2vec and DeepWalk except for two
networks (Airport and Cora). The performance of the spectral
embedding methods is less consistent across networks. For example,
L-EigenMap can perform on par with the top-performing methods in
three networks (Political Blog, Cora, and High School) but
underperform on the other four networks. Similary, Modularity
embedding performedparticularlywell on Footballbut substantially
underperformed on the other networks.

Discussion
We investigated the ability of neural graph embeddings to encode
communities by focusing on shallow linear graph neural networks—
node2vec, DeepWalk, and LINE—and comparing them with traditional
spectral approaches. We proved that, for not-too-sparse networks
created by the PPM, node2vec is an optimal method to encode their
community structure in that the algorithmic detectability limit

Fig. 3 | Performance of community detectionmethods on empirical networks.
Each panel illustrates the distribution of element-centric similarities for the com-
munity detection and graph embedding methods. Each circle denotes the

outcome of a single run. The boxes indicate the quartiles of this distribution. The
whiskers extend to the farthest data point within 1.5 times the interquartile
range from the nearest hinge.
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coincides with the information-theoretic limit. Our results elucidate
how and why node2vec works for community detection by demon-
strating the equivalence between the embedding learned by node2vec
and the spectral embedding based on the eigenvectors of the nor-
malized Laplacianmatrix. This equivalence provided insights into how
communities in a network are embedded and the effectiveness of
node2vec in learning network communities.

Our theoretical framework shows that graph embeddings based
on simple neural networks can achieve optimal community detec-
tion. This finding provides guiding principles for developing effec-
tive neural embeddingmethods that are able to resolve communities
in embedding space. In neural graph embeddings, deep neural
structures and non-linear activation are considered indispensable in
order to achieve high performance. The neural network architecture
is also critical for graph neural networks for the community detec-
tion task78. Our findings instead demonstrate that a simple neural
network with only one hidden layer and no non-linear activation can
achieve the information-theoretical detectability limit of
communities.

DeepWalk38 and LINE39 are also optimal in terms of the detect-
ability limit of communities (Supplementary Information Section 2).
However, node2vec surpasses both DeepWalk and LINE in numerical
tests, owing to two key features. First, node2vec learns degree-
agnostic embeddings, which are highly robust against degree
heterogeneity62. By contrast, DeepWalk tends to learn node degree as
the primary dimension in the embedding space62. Consequently,
degree heterogeneity introduces considerable noise to the commu-
nity structure in the DeepWalk embedding. Second, LINE is a specific
instance of node2vec with window size T = 130, and thus learns the
dyadic relationships between nodes. As is the case for node2vec,
LINE is resilient to degree heterogeneity, and performed closely to
node2vec for some networks in our simulations. However, it did not
perform as well as node2vec, and this discrepancy may be attributed
to LINE’s emphasis on learning stochastic and noisy dyadic rela-
tionships, as opposed to the indirect relationships that node2vec
captures.

Our results come with caveats. First, our numerical results do
not report the limiting performance of the embedding methods,
rather the lower bound of the performance limited by the K-means
algorithm. With graph embedding methods, the performance of
community detection depends on both the quality of the embedding
and the performance of the subsequent data clustering procedure.
Consequently, the performance of the graph embedding methods
can be limited by the K-means algorithm. For instance, a previous
study22 using the K-means algorithm demonstrated that node2vec
did not perform as well as standard community detection methods
for the LFR networks even if its hyperparameters are fine-tuned.
Consistently with this result, the performance of node2vec was
suboptimal for the LFR networks in our analysis. However, we note
that the LFR networks—that produce communities of different sizes—
are challenging for the K-means algorithm—that tends to detect
communities of nearly equal sizes68. In fact, communities in LFR
networks are still well separated in the embedding of node2vec, as
knowing the position of the centroids of the planted communities
leads to a very good performance (Supplementary Information 7).
Nevertheless, the clustering step is a critical limitation when using
graph embedding for community detection. An extended K-means
algorithm that can handle imbalanced cluster sizes could be a
potential solution to this issue79. Our results reveal that communities
are accurately represented in the embeddings, which might be suf-
ficient for applications that can benefit from community structure
but do not require the clustering step, such as link prediction80 and
node classification20,62.

Second, in our analytical derivations, we assumed that the
average degree is sufficiently large, as is the case for the

corresponding analysis of spectral modularity maximization58. Thus,
the optimality may not hold if networks are substantially sparse.
However, our simulations suggest that node2vec is resilient to net-
work sparsity compared with traditional spectral embedding meth-
ods. Understanding the factor inducing such resilience is left to
future work.

Third, while we restricted ourselves to the community detec-
tion task, graph embeddings have been used for other tasks,
including link prediction, node classification, and anomaly detec-
tion. Investigating the theoretical foundation behind the perfor-
mance of neural embeddings in other tasks is a promising research
direction.

We believe that our study will provide the foundation for future
studies that uncover the inner workings of neural embeddingmethods
and bridge the study of artificial neural networks to network science.

Methods
node2vec as spectral embedding
node2vec learns the structure of a given network based on random
walks. A randomwalk traverses a given network by following randomly
chosen edges and generates the sequence of nodes x(1), x(2), …. The
sequence is then fed into skip-gram word2vec81, which learns how
likely it is that a node j appears in the surrounding of another node i up
to a certain time lag T (i.e., window length) through the conditional
probability

Pðxðt + τÞ = jjxðtÞ = i, 1≤ jτj≤TÞ= 1
Z
expðu>

i vjÞ, ð2Þ

where ui 2 RC × 1, vj 2 RC × 1, and Z is a normalization constant. Each
node i is associated with two vectors: vector ui represents the
embedding of node i; vi represents node i as a context of other nodes.
Because the normalization constant is computationally expensive,
node2vec uses a heuristic training algorithm, i.e., negative sampling81.
When trained with negative sampling, skip-gram word2vec is equiva-
lent to a spectral embedding that factorizes matrix Rn2v with
elements30,82:

Rn2v
ij = log

1
T

XT
τ = 1

Pðxðt + τÞ = jjxðtÞ = iÞ
PðxðtÞ = jÞ

� �
, ð3Þ

in the limit of C→ n with T greater than or equal to the network dia-
meter, where P(x(t) = i) is the probability that the tth node in the given
sequence is node i (see Supporting Information Section 3 for the step-
by-step derivation). Note that the two embedding vectors vi and ui
generated by node2vec are parallel to each other because Rn2v is
symmetric30,62,82.

Leveraging this equivalence, we take another step forward to
connect the result with random matrix theory, deriving the detect-
ability limitof thesemethods for community detection.While previous
studies demonstrated that node2vec factorizesRn2v, it remains unclear
about its spectral properties,which is crucial to derive the detectability
limit. Deriving the spectrum of Rn2v in a closed form is challenging. In
fact, to identify the spectral density analytically, we need to
decompose Rn2v into a linear combination of matrices (e.g.,
1
T

PT
τ = 1

Pðxðt + τÞ = jjxðtÞ = iÞ
PðxðtÞ = jÞ

h i
), which is not straightforward due to the non-

linear element-wise logarithmic transformation. Here, we derive the
spectral properties of Rn2v by approximating the element-wise loga-
rithm with a linear function based on the assumption that the window
length T is sufficiently large. To demonstrate our argument, let us

describe Rn2v
ij in the language of randomwalks. Given that the network

is undirected and unweighted, the probability P(x(t) = j) corresponds to
the long-term probability of finding the random walker at node j. The
probability P(x(t+τ) = j∣x(t) = i) refers to the transition of a walker from
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node i to node j after τ steps. In the limit τ→∞, the walker reaches the
stationary state, and P(x(t+τ) = j∣x(t) = i) approaches P(x(t) = j). Thus, in the
regime of a sufficiently large T, we take the Taylor expansion of

Rn2v
ij = log 1 + ϵij

� �
around ϵij =

PT
τ = 1 Pðxðt + τÞ = jjxðtÞ = iÞ=½TPðxðtÞ = jÞ� � 1

and obtain

Rn2v
ij ’ R̂

n2v
ij : = 1

T

PT
τ = 1

Pðxðt + τÞ = jjxðtÞ = iÞ
PðxðtÞ = jÞ

h i
� 1: ð4Þ

In matrix form,

R̂
n2v

=
2m
T

XT
τ = 1

D�1A
� �τ" #

D�1 � 1n×n, ð5Þ

whereA is the adjacencymatrix,D is a diagonalmatrixwhose diagonal
element Dii is the degree ki of node i, m is the number of edges in the
network, and 1n ×n is the n × n all-one matrix. We used P(x(t) = j) = kj/2m
and ðD�1AÞτij = Pðxðt + τÞ = jjxðtÞ = iÞ, derived from the fact that P(x(t) = j) is
proportional to degree in undirected networks; D−1A is the transition
matrix, whose τth power represents the random walk transition
probability after τ steps.

The node2vec matrix R̂
n2v

has a connection to the normalized
Laplacian matrix, L, which is tightly related to the characteristics of
random walks and network communities83. The normalized Laplacian
matrix is defined by L : = I�D�1

2AD�1
2. By using an alternative

expression of the transition probability, i.e., ðD�1AÞτ =
D�1

2ðD�1
2AD�1

2ÞτD1
2, we rewrite R̂

n2v
as

R̂
n2v

=
2m
T

XT
τ = 1

D�1
2 D�1

2AD�1
2

� �τ
D�1

2

" #
� 1n×n

=2mD�1
2

1
T

XT
τ = 1

I� Lð Þτ � D
1
21nffiffiffiffiffiffiffi
2m

p 1>nD
1
2ffiffiffiffiffiffiffi

2m
p

" #
D�1

2,

ð6Þ

where 1n is a column vector of length n. We note that vector
D1=21n=

ffiffiffiffiffiffiffi
2m

p
is a trivial eigenvector of L associated with the null

eigenvalue, λ1 = 0. Furthermore, I� Lð Þτ changes the eigenvalues while
keeping the eigenvectors intact. This means that R̂

n2v
can be specified

by using the spectrum of L, i.e.,

R̂
n2v

=D�1
2Γ

ϕðλ1Þ 0

. .
.

0 ϕðλnÞ

2
664

3
775Γ>D�1

2, ð7Þ

where Γ 2 Rn×n is thematrix of the eigenvectors of L, andϕ is a graph
kernel18 that transforms the eigenvalues λi (i = 1, 2, …, n) of L by

ϕðλiÞ=
2mð1�λiÞ 1�ð1�λiÞT

� �
Tλi

ðλi≠0Þ,
0 ðλi =0Þ,

8<
: ð8Þ

or equivalently ϕðλiÞ= 2m
T

PT
τ = 1 ð1� λiÞτ if λi ≠0 (Fig. 4). Equation (7)

tells us that the eigenvectors U of R̂
n2v

are equivalent to the eigen-
vectors Γ of the normalized Laplacian matrix, up to a linear transfor-
mation given by

U : =D
1
2Γ : ð9Þ

Building on the correspondence between the normalized
Laplacian L and the node2vec matrix R̂

n2v
, we derive the algorithmic

community detectability limit of node2vec. Following58,60,64, we
assume that the network consists of two communities generated by
the PPM. Then, the non-trivial eigenvector of L encodes the com-
munities and has the optimal detectability limit of communities,
provided that the average degree is large (1)58,60,64. This non-trivial
eigenvector of L corresponds to the principal eigenvector of R̂

n2v
.

Specifically, the non-trivial eigenvector of L is associated with the
smallest non-zero eigenvalue λ2, which is λ2 < 1 when each commu-
nity is densely connected within itself and sparsely with other
communities17. The eigenvalues are mirrored in the eigenvalues ϕ(λi)
of R̂

n2v
, and λ2—the smallest non-zero eigenvalue—yields the max-

imum ϕ-value (Fig. 4).
This correspondence of non-trivial eigenvectors between R̂

n2v

and L suggests that communities detectable by L are also detectable
by R̂

n2v
and vice versa. Thus, spectral embedding with R̂

n2v
has the

same information-theoretic detectability limit as spectral methods
relying on eigenvectors of L, for networks with sufficiently high
degree.

Detectability limit of DeepWalk
We expand our argument to include DeepWalk38. Similar to node2vec,
DeepWalk also trains word2vec but with a different objective function.
Previous studies have demonstrated that DeepWalk is a matrix fac-
torization method30,62. However, it remains unclear about the spectral
properties of the matrix to be factorized. Furthermore, deriving the
spectral properties of the matrix is challenging due to the element-
wise logarithm involved in the matrix to be factorized. More

Fig. 4 | Matrix factorization of node2vec.Graph kernel ϕ(λi; T) of node2vec matrix R̂
n2v

across different T values.A The plot for all eigenvalues. B A zoom-in plot for the
values between one and two. The function ϕ(λi) is non-negative and monotonically decreasing for 0 < λi ≤ 1 and ϕ(λi) ≤0 for 1 < λi ≤ 2.
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specifically, DeepWalk generates an embedding by factorizing amatrix
with entries62:

RDW
ij : = log

1
T

XT
τ = 1

PðxðtÞ = i, xðt + τÞ = jÞ
PðxðtÞ = iÞ � 1

n

 !
, ð10Þ

in the limit of C → n with T being greater than the network diameter.
The element-wise logarithm in Eq. (10) makes it challenging to
derive the spectral properties of RDW

ij . Here, we employ a
linear approximation by assuming that T is sufficiently large.
When T is large, the random walker reaches the stationary state,
which is independent of where the walker starts from ref. 83. Thus,
we have

lim
τ!1

PðxðtÞ = i, xðt + τÞ = jÞ= PðxðtÞ = iÞPðxðtÞ = jÞ

=PðxðtÞ = iÞ � kj

nhki
ð11Þ

In particular, if the degree distribution is Poisson and the average
degree is sufficiently large,

kj

nhki ’
1
n
, ð12Þ

which is true for the PPM. By substituting (12) into (11), we obtain

PðxðtÞ = i, xðt + τÞ = jÞ ’ PðxðtÞ = iÞ � 1
n

for τ≫1: ð13Þ

Armed with this result, we demonstrate the detectability limit of
DeepWalk as follows. Assuming that the window length T is large, we
take the Taylor expansion of (10) around ϵ0ij =

PT
τ = 1

PðxðtÞ = i, xðt + τÞ = jÞ=½TðPðxðtÞ = iÞ � 1=nÞ� � 1 and obtain

RDW
ij ’ R̂

DW
ij : =

1
T

XT
τ = 1

PðxðtÞ = i, xðt + τÞ = jÞ
PðxðtÞ = iÞ � 1

n

 !
� 1: ð14Þ

In matrix form,

R̂
DW

: =
n
T

XT
τ = 1

D�1A
� �τ" #

� 1n×n: ð15Þ

Note that R̂
DW

is similar to the node2vec matrix R̂
n2v

(5). The right/left
eigenvectors of R̂

DW
are obtained from those of the normalized

Laplacian by simple multiplications by the operators D1/2 and D−1/2,
respectively. Therefore, DeepWalk has the information-theoretical
detectability limit as well.

Detectability limit of LINE
LINE39 is a special version of node2vec with the window length
being T = 1. The corresponding matrix factorized by LINE is given by
ref. 30:

RLINE
ij : = log

Aij

kikj
+a0

 !
+ log 2m: ð16Þ

For LINE, although ref. 30 shows log
Aij

kikj

� �
+ log 2m, we introduce a small

positive value a0 (a0 >0) to prevent the matrix elements from being
infinite for Aij=0. To obtain the spectrum of RLINE, we exploit the Taylor
expansion logðx +a0Þ ’ x

a0
+ loga0 around x=0, where a0 >0. Specifi-

cally, assuming that the average degree is sufficiently large, we obtain

R̂
LINE
ij =

Aij

a0kikj
+ loga0 + log 2m, ð17Þ

or equivalently in matrix form

R̂
LINE

=
1
a0

D�1AD�1 +a11n×n

=
1
a0

D�1=2ðI� LÞD�1=2 +a11n×n

=
1
a0

D�1=2 I� L+2a0a1m
D

1
21nffiffiffiffiffiffiffi
2m

p 1>nD
1
2ffiffiffiffiffiffiffi

2m
p

 !
D�1=2:

ð18Þ

where a1 : = loga0 + logð2mÞ. Equation (18) is reminiscent of (6) for
node2vec. Comparing Eqs. (18) and (6), it immediately follows that
they share the same eigenvectors, and thus node2vec and LINE have
the same detectability threshold.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The dataset used in this study is available in the Figshare database
under accession code 10.6084/m9.figshare.26808775. The data can be
obtained at ref. 84.

Code availability
We made available the code and documentations to reproduce all
results. See our archived code at ref. 85 for reproducing our results and
the up-to-date version at ref. 57 for replications.

References
1. Barabási, A.-L. & Pósfai, M. Network science, 1st edn. (Cambridge

University Press, Cambridge, United Kingdom, 2016).
2. Menczer, F., Fortunato, S. & Davis, C. A. A first course in

network science, 1st edn. (Cambridge University Press,
Cambridge, 2020).

3. Newman, M. Networks, 2nd edn. (Oxford University Press,
Oxford, United Kingdom; New York, NY, United States of
America, 2018).

4. Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P. & Rosenquist, J.
Understanding the demographics of Twitter users. Proc. Int. AAAI
Conf. Web Soc. Media 5, 554–557 (2011).

5. Kojaku, S., Hébert-Dufresne, L., Mones, E., Lehmann, S. & Ahn, Y.-Y.
The effectiveness of backward contact tracing in networks. Nat.
Phys. 17, 652–658 (2021).

6. Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).
7. Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of

the airline transportation network in the prediction and predict-
ability of global epidemics. Proc. Natl. Acad. Sci. 103,
2015–2020 (2006).

8. Bardoscia,M. et al. Thephysics offinancial networks.Nat. Rev. Phys.
3, 490–507 (2021).

9. Barucca, P. et al. Network valuation in financial systems. Math.
Finance 30, 1181–1204 (2020).

10. Newman, M. E. J. The structure of scientific collaboration networks.
Proc. Natl. Acad. Sci. 98, 404–409 (2001).

11. Clauset, A., Arbesman, S. & Larremore, D. B. Systematic inequality
and hierarchy in faculty hiring networks. Sci. Adv. 1, e1400005
(2015).

12. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci.
20, 353–364 (2017).

13. Bassett, D. S. & Bullmore, E. Small-world brain networks. Neu-
roscientist 12, 512–523 (2006).

14. Kim, J., Park, S.-M. & Cho, K.-H. Discovery of a kernel for controlling
biomolecular regulatory networks. Sci. Rep. 3, 2223 (2013).

Article https://doi.org/10.1038/s41467-024-52355-w

Nature Communications |         (2024) 15:9446 8

www.nature.com/naturecommunications


15. Samaga, R. & Klamt, S. Modeling approaches for qualitative and
semi-quantitative analysis of cellular signaling networks. Cell
Commun. Signal. 11, 1–19 (2013).

16. Rozum, J. C., Zañudo, J. G. T., Gan, X., Deritei, D. & Albert, R. Parity
and time reversal elucidate both decision-making in empirical
models and attractor scaling in critical boolean networks. Sci. Adv.
7, eabf8124 (2021).

17. von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17,
395–416 (2007).

18. Kunegis, J. & Lommatzsch, A. Learning spectral graph transforma-
tions for link prediction. In: Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09, 561–568
(Association for Computing Machinery, New York, NY, USA, 2009).

19. Nickel, M. & Kiela, D. Poincaré embeddings for learning hierarchical
representations. In: Guyon, I. et al. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 30 (Curran Associates, Inc., 2017).

20. Peng, H., Ke, Q., Budak, C., Romero, D. M. & Ahn, Y.-Y. Neural
embeddings of scholarly periodicals reveal complex disciplinary
organizations. Sci. Adv. 7, eabb9004 (2021).

21. Barot, A., Bhamidi, S. & Dhara, S. Community detection using low-
dimensional network embedding algorithms. arXiv https://arxiv.
org/abs/2111.05267 (2021).

22. Tandon, A. et al. Community detection in networks using graph
embeddings. Phys. Rev. E 103, 022316 (2021).

23. Chen,H. et al. PME: projectedmetric embeddingonheterogeneous
networks for link prediction. In: Proceedings of the 24th ACM
SIGKDD International Conference on KDD, KDD ’18, 1177–1186
(Association for Computing Machinery, New York, NY, USA, 2018).

24. Masrour, F., Wilson, T., Yan, H., Tan, P.-N. & Esfahanian, A. Bursting
the filter bubble: fairness-aware network link prediction. Proc. AAAI
Conf. Artif. Intell. 34, 841–848 (2020).

25. Kwak, H., An, J., Jing, E. & Ahn, Y.-Y. FrameAxis: characterizing
microframe bias and intensity with word embedding. PeerJ Com-
put. Sci. 7, e644 (2021).

26. Murray, D. et al. Unsupervised embedding of trajectories captures
the latent structureof scientificmigration.Proc.Natl. Acad. Sci. 120,
e2305414120 (2023).

27. Sourati, J. & Evans, J. A. Accelerating science with human-aware
artificial intelligence. Nat. Hum. Behav. 7, 1682–1696 (2023).

28. Tshitoyan, V. et al. Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571,
95–98 (2019).

29. Newman, M. E. J. Finding community structure in networks
using the eigenvectors of matrices. Phys. Rev. E 74, 036104
(2006).

30. Qiu, J. et al. Network embedding as matrix factorization: unifying
DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the Eleventh
ACM International Conference on WSDM, WSDM ’18, 459–467
(Association for Computing Machinery, New York, NY, USA, 2018).

31. Pennington, J., Socher, R. & Manning, C. GloVe: global vectors for
word representation. In: Proceedings of the 2014 Conference on
EMNLP, 1532–1543 (Association for Computational Linguistics,
Doha, Qatar, 2014).

32. Agarwal, C., Lakkaraju, H. & Zitnik, M. Towards a unified framework
for fair and stable graph representation learning. In: de Campos, C.
& Maathuis, M. H. (eds.) Proceedings of the Thirty-Seventh Con-
ference onUncertainty in Artificial Intelligence, vol. 161, Proceedings
of Machine Learning Research, 2114–2124 (PMLR, 2021).

33. Dehghan-Kooshkghazi, A., Kamiński, B., Kraínski, L., Prałat, P. &
Théberge, F. Evaluating node embeddings of complex networks. J.
Complex Netw. 10, cnac030 (2022).

34. Grover, A. & Leskovec, J. Node2vec: scalable feature learning for
networks. In: Proceedings of the 22nd ACM SIGKDD International
Conference on KDD, KDD ’16, 855–864 (Association for Computing
Machinery, New York, NY, USA, 2016).

35. Hamilton, W., Ying, Z. & Leskovec, J. Inductive representation
learning on large graphs. In: Guyon, I. et al. (eds.) Advances in
Neural Information Processing Systems, vol. 30 (Curran Associates,
Inc., 2017).

36. Liu, L. et al. Understanding the onset of hot streaks across artistic,
cultural, and scientific careers. Nat. Commun. 12, 5392 (2021).

37. Meng, L. & Masuda, N. Analysis of node2vec random walks on
networks. Proc. R. Soc. A: Math. Phys. Eng. Sci. 476,
20200447 (2020).

38. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: online learning of
social representations. In: Proceedings of the 20th ACM SIGKDD
International Conference on KDD, KDD ’14, 701–710 (Association for
Computing Machinery, New York, NY, USA, 2014).

39. Tang, J. et al. LINE: large-scale information network embedding. In:
Proceedings of the 24th International Conference on World Wide
Web, WWW ’15, 1067–1077 (International World Wide Web Con-
ferences Steering Committee, Republic and Canton of Geneva,
CHE, 2015).

40. Veličković, P. et al. Graph attention networks. In: International
Conference on Learning Representations (Poster) (2018).

41. Fortunato, S. Community detection in graphs. Phys. Rep. 486,
75–174 (2010).

42. Fortunato, S. & Hric, D. Community detection in networks: a user
guide. Phys. Rep. 659, 1–44 (2016).

43. Fortunato, S. & Newman, M. E. J. 20 years of network community
detection. Nat. Phys. 18, 848–850 (2022).

44. Peixoto, T. P. Parsimonious module inference in large networks.
Phys. Rev. Lett. 110, 148701 (2013).

45. Karrer, B. & Newman, M. E. J. Stochastic blockmodels and com-
munity structure in networks. Phys. Rev. E 83, 016107 (2011).

46. Zhang, Y. & Tang, M. Exact recovery of community structures using
DeepWalk and Node2vec. arXiv https://arxiv.org/abs/2101.
07354 (2022).

47. Chen, P.-Y. & Hero, A. O. Universal phase transition in community
detectability under a stochastic block model. Phys. Rev. E 91,
032804 (2015).

48. Chen, P.-Y. & Hero, A. O. Phase transitions in spectral community
detection. IEEE Trans. Signal Process. 63, 4339–4347 (2015).

49. Zhang, Y. & Tang, M. Consistency of random-walk based network
embedding algorithms. arXiv https://arxiv.org/abs/2101.
07354 (2021).

50. Abbe, E. & Sandon, C. Community detection in general stochastic
block models: fundamental limits and efficient algorithms for
recovery. In: 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, 670–688 (2015).

51. Newman,M. E. J.Networks: an introduction (OxfordUniversity Press,
Oxford; New York, 2010).

52. Krzakala, F. et al. Spectral redemption in clustering sparse net-
works. Proc. Natl. Acad. Sci. 110, 20935–20940 (2013).

53. Benaych-Georges, F., Bordenave, C. & Knowles, A. Spectral radii of
sparse random matrices. Ann. inst. Henri Poincare (B) Probab. Stat.
56, 2141 – 2161 (2020).

54. Newman,M. E. J. Spectral community detection in sparse networks.
arXiv https://arxiv.org/abs/1308.6494 (2013).

55. Zhang, P. & Moore, C. Scalable detection of statistically significant
communities and hierarchies, using message passing for mod-
ularity. PNAS 111, 18144–18149 (2014).

56. Decelle, A., Krzakala, F., Moore, C. & Zdeborová, L. Asymptotic
analysis of the stochastic blockmodel for modular networks and its
algorithmic applications. Phys. Rev. E 84, 066106 (2011).

57. Code: network clustering via neural embedding. https://github.
com/skojaku/community-detection-via-neural-embedding (2024).

58. Nadakuditi, R. R. & Newman, M. E. J. Graph spectra and the
detectability of community structure in networks. Phys. Rev. Lett.
108, 188701 (2012).

Article https://doi.org/10.1038/s41467-024-52355-w

Nature Communications |         (2024) 15:9446 9

https://arxiv.org/abs/2111.05267
https://arxiv.org/abs/2111.05267
https://arxiv.org/abs/2101.07354
https://arxiv.org/abs/2101.07354
https://arxiv.org/abs/2101.07354
https://arxiv.org/abs/2101.07354
https://arxiv.org/abs/1308.6494
https://github.com/skojaku/community-detection-via-neural-embedding
https://github.com/skojaku/community-detection-via-neural-embedding
www.nature.com/naturecommunications


59. Condon, A. & Karp, R. M. Algorithms for graph partitioning on the
planted partitionmodel. In: Hochbaum, D. S., Jansen, K., Rolim, J. D.
P. & Sinclair, A. (eds.) Randomization, Approximation, and Combi-
natorial Optimization. Algorithms and Techniques, Lecture Notes in
Computer Science, 221–232 (Springer, Berlin, Heidelberg, 1999).

60. Radicchi, F. Detectability of communities in heterogeneous net-
works. Phys. Rev. E 88, 010801 (2013).

61. Belkin, M. & Niyogi, P. Laplacian Eigenmaps for dimensionality
reduction and data representation. Neural Comput. 15,
1373–1396 (2003).

62. Kojaku, S., Yoon, J., Constantino, I. & Ahn, Y.-Y. Residual2Vec:
debiasing graph embedding with random graphs. In: Advances in
Neural Information Processing Systems, vol. 34, 24150–24163
(Curran Associates, Inc., 2021).

63. Gates, A. J., Wood, I. B., Hetrick, W. P. & Ahn, Y.-Y. Element-centric
clustering comparison unifies overlaps and hierarchy. Sci. Rep. 9,
8574 (2019).

64. Radicchi, F. Aparadox in community detection.EPL (Europhys. Lett.)
106, 38001 (2014).

65. Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for
testing community detection algorithms. Phys. Rev. E 78,
046110 (2008).

66. Bianconi, G. & Marsili, M. Loops of any size and Hamilton cycles in
random scale-free networks. J. Stat. Mech.: Theory Exp. 2005,
P06005 (2005).

67. Cantwell, G. T., Kirkley, A. & Radicchi, F. Heterogeneous message
passing for heterogeneous networks. Phys. Rev. E 108,
034310 (2023).

68. Wu, J., Xiong, H., Chen, J. & Zhou, W. A generalization of proximity
functions for k-means. In: Seventh IEEE International Conference on
Data Mining (ICDM 2007) 361–370 (2007).

69. Hric, D., Darst, R. K. & Fortunato, S. Community detection in net-
works: structural communities versus ground truth. Phys. Rev. E90,
062805 (2014).

70. Peel, L., Larremore, D. B. & Clauset, A. The ground truth about
metadata and community detection in networks. Sci. Adv. 3,
e1602548 (2017).

71. Adamic, L. A. & Glance, N. The political blogosphere and the 2004
us election: divided they blog. In: Proceedings of the 3rd interna-
tional workshop on Link discovery, 36–43 (2005).

72. Opsahl, T. Why anchorage is not (that) important: binary ties
and sample selection. https://toreopsahl.com/2011/08/12/why-
anchorage-is-not-that-important-binary-ties-and-sample-
selection/ (2011).

73. McCallum, A. K., Nigam, K., Rennie, J. & Seymore, K. Automating the
construction of internet portals with machine learning. Inf. Retr. 3,
127–163 (2000).

74. Girvan, M. & Newman, M. E. Community structure in social and
biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).

75. Newman, M. E. J. Modularity and community structure in networks.
Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).

76. Fournet, J. & Barrat, A. Contact patterns among high school stu-
dents. PloS One 9, e107878 (2014).

77. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20,
53–65 (1987).

78. Kawamoto, T., Tsubaki, M. & Obuchi, T. Mean-field theory of graph
neural networks in graph partitioning. In: Adv. Neural Inf. Process.
Syst., vol. 31 (Curran Associates, Inc., 2018).

79. Liang, J., Bai, L., Dang, C. & Cao, F. The k-means-type algorithms
versus imbalanced data distributions. IEEE Trans. Fuzzy Syst. 20,
728–745 (2012).

80. Ghasemian, A., Hosseinmardi, H., Galstyan, A. G., Airoldi, E. M. &
Clauset, A. Stacking models for nearly optimal link prediction in
complex networks. Proc. Natl. Acad. Sci. 117, 23393–23400 (2019).

81. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Dis-
tributed representations of words and phrases and their composi-
tionality. In: Adv. Neural Inf. Process. Syst., vol. 26 (Curran
Associates, Inc., 2013).

82. Levy, O. & Goldberg, Y. Neural word embedding as implicit matrix
factorization. In: Adv. Neural Inf. Process. Syst., vol. 27 (Curran
Associates, Inc., 2014).

83. Masuda, N., Porter, M. A. & Lambiotte, R. Random walks and diffu-
sion on networks. Phys. Rep. 716–717, 1–58 (2017).

84. Kojaku, S., Radicchi, F., Ahn, Y.-Y. & Fortunato, S. Dataset for net-
work community detection via neural embeddings (2023).

85. Archived code: network clustering via neural embedding. https://
doi.org/10.5281/zenodo.13362073 (2023).

Acknowledgements
This project was partially supported by the Army Research Office
under contract number W911NF-21-1-0194, by the Air Force Office of
Scientific Research under award numbers FA9550-19-1-0391, FA9550-
21-1-0446 and FA9550-24-1-0039, by the National Science Foundation
under award number 1927418, and by the National Institutes of Health
under awards U01 AG072177 and U19 AG074879.

Author contributions
S.K. and F.R. performed the analysis and experiments. S.K., F.R., Y.A.,
and S.F. conceived the research, discussed, and wrote the manuscript.

Competing interests
The authors have no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-52355-w.

Correspondence and requests for materials should be addressed to
Santo Fortunato.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-52355-w

Nature Communications |         (2024) 15:9446 10

https://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection/
https://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection/
https://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection/
https://doi.org/10.5281/zenodo.13362073
https://doi.org/10.5281/zenodo.13362073
https://doi.org/10.1038/s41467-024-52355-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Network community detection via neural embeddings
	Results
	Planted partition model
	Detectability limit of communities
	Detectability limit of node2vec
	Experiment setup
	Simulations: PPM
	Simulations: LFR benchmark
	Empirical networks

	Discussion
	Methods
	node2vec as spectral embedding
	Detectability limit of DeepWalk
	Detectability limit of LINE
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




