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ABSTRACT

Graph embedding techniques, which learn low-dimensional representations of a
graph, are achieving state-of-the-art performance in many graph mining tasks.
Most existing embedding algorithms assign a single vector to each node, implicitly
assuming that a single representation is enough to capture all characteristics of
the node. However, across many domains, it is common to observe pervasively
overlapping community structure, where most nodes belong to multiple
communities, playing different roles depending on the contexts. Here, we propose
persona2vec, a graph embedding framework that efficiently learns multiple
representations of nodes based on their structural contexts. Using link prediction-
based evaluation, we show that our framework is significantly faster than the existing
state-of-the-art model while achieving better performance.

Subjects Artificial Intelligence, Data Science, Network Science and Online Social Networks,
Social Computing

Keywords Graph embedding, Overlapping community, Social context, Social network analysis,
Link prediction

INTRODUCTION

Graph embedding maps the nodes in a graph to continuous and dense vectors that capture
relations among the nodes (Perozzi, Al-Rfou & Skiena, 2014; Grover & Leskovec, 20165
Tang et al., 2015). Resulting node representations allow direct applications of algebraic
operations and common algorithms, facilitating graph mining tasks such as node
classification (Sen et al., 2008; Perozzi, Al-Rfou ¢ Skiena, 2014), community detection
(Fortunato, 2010; Yang et al., 2016), link prediction (Grover ¢ Leskovec, 2016),
visualization (Tang et al., 2015), and computer vision (Xie et al., 2020). Most methods
map each node to a single vector, implicitly assuming that a single representation is
sufficient to capture the full characteristics of a node.

However, nodes often play multiple roles. For instance, people have multiple roles, or
“personas”, across contexts (e.g., professor, employee, and so on) (Ahn, Bagrow ¢
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Lehmann, 2010; Coscia et al., 2014; Leskovec et al., 2009; Leskovec, Lang & Mahoney, 2010).
Similarly, proteins and other biological elements play multiple functionalities (Palla

et al., 2005; Gavin et al., 2006; Ahn, Bagrow & Lehmann, 2010). Another example is the
polysemy of words when their relations are modeled with graphs; many words possess
multiple meanings differentiated by the contexts (Chen, Liu & Sun, 2014; Li ¢ Jurafsky,
2015; Iacobacci, Pilehvar ¢ Navigli, 2015). Explicit modeling of such multiplicity and
overlapping clusters has been fruitful not only for community detection (Rosvall et al.,
2014; Coscia et al., 2014; Epasto, Lattanzi ¢» Paes Leme, 2017), but also for improving the
quality of embedding (Li ¢ Jurafsky, 2015; Epasto ¢ Perozzi, 2019; Liu et al., 2019). Yet,
with the scarcity of embedding methods embracing this idea, the full potential of this
approach has not been properly explored.

In this paper, we propose persona2vec, a scalable framework that builds on the idea
of ego-splitting (Epasto, Lattanzi ¢» Paes Leme, 2017), the process of identifying local
structural contexts of a node via performing local community detection on the node’s
ego-network. For each detected local community (role), we transform each node into
multiple personas if there are multiple local communities to which the node belongs.
After the split, the original node is replaced by the new persona nodes that inherit the
connection from each local community, producing a new persona graph. Instead of
separating a node’s persona nodes from each other completely (Epasto ¢ Perozzi, 2019),
we add directed, weighted edges between personas to capture their origin. In doing
so, we allow the direct application of the existing graph embedding methods. In addition,
we take an approach of considering persona-based learning as fine-tuning of the base
graph embedding, achieving both efficiency and balance between information from the
original graph and the persona graph. Compared with the previous approach (Epasto ¢
Perozzi, 2019), our framework is conceptually simpler to understand and practically easier
to implement. Furthermore, it achieves better performance in the link prediction tasks
while being much faster. We also would like to clarify that the primary purpose of persona
splitting is not about obtaining multiple representations, each of which may be suited
for a specific task; it is about teasing out multiple contexts that a single node may possess.
In other words, even with a single task, we argue that learning multiple representations for
some nodes is highly beneficial.

In sum, we would like to highlight that our approach (1) drastically lowers the barrier
for combining existing algorithms with persona splitting, (2) significantly improves the
efficiency of the ego-splitting approach, while (3) consistently excelling the previous
state-of-the-art model in the link prediction task. Our implementation of persona2vec is
publicly available at https://github.com/jisungyoon/persona2vec.

RELATED WORK

In addition to graph embedding, our work is closely related to the research of identifying
overlapping communities in graphs. Various non-embedding methods such as link
clustering (Ahn, Bagrow & Lehmann, 2010; Evans ¢ Lambiotte, 2009), clique percolation
(Palla et al., 2005), and mixed membership stochastic blockmodel (Airoldi et al., 2008)
have been proposed. Another thread of works focuses on using local graph structure to
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extract community information (Coscia et al., 2014; Epasto et al., 2015; Epasto, Lattanzi &
Paes Leme, 2017). Specifically, Epasto, Lattanzi ¢ Paes Leme (2017) introduce the
persona graph method for detecting overlapping communities in graphs, leveraging
ego-network partition. The combination of ego-network analysis and graph embedding
methods is still rare. An example is SPLITTER (Epasto & Perozzi, 2019), which we use
as the baseline in this paper. Instead of constraining the relations between personas with a
regularization term, we propose a simpler and more efficient way of adding persona edges
to the graph.

Our work is also related to the word disambiguation problem in a word embedding.
Recently, word embedding techniques (Mikolov et al., 2013a, 2013b; Pennington, Socher ¢
Manning, 2014) have been extensively applied to various NLP tasks as the vectorized
word representations can effectively capture syntactic and semantic information.
Although some words have multiple senses depending on the context, the original word
embedding methods only assign one vector to each word. Li & Jurafsky (2015) shows that
embedding that is aware of multiple word senses and provides a vector for each specific
sense does improve the performance for some NLP tasks. For this issue, some utilize
the local context information and clustering for identifying word sense (Reisinger ¢
Mooney, 2010; Wu & Giles, 2015; Neelakantan et al., 2015), some resort to external
lexical database for disambiguation (Rothe & Schiitze, 2015; Iacobacci, Pilehvar ¢ Navigli,
2015; Camacho-Collados, Pilehvar ¢ Navigli, 2016; Chen, Liu & Sun, 2014; Jauhar, Dyer ¢
Hovy, 2015; Pelevina et al., 2017), while some combine topic modeling methods with
embedding (Liu, Qiu & Huang, 2015; Liu et al., 2015; Cheng et al., 2015; Zhang & Zhonyg,
2016). We adopt the idea of assigning multiple vectors to each node in the graph to
represent different roles as well as exploiting local graph structure for the purpose.

PROPOSED METHOD: PERSONA2VEC

persona2vec creates a persona graph, where some nodes are split into multiple personas.
We then apply a graph embedding algorithm to the persona graph to learn the embeddings
of the personas (see Fig. 1). Let us explain the method formally. Let G = (V, E) be a
graph with a set of nodes V and a set of edges E. |V| and |E| denote the number of nodes
and edges respectively. Let f : v — RY be the embedding function that maps a node v to a
d-dimensional vector space (d < |V]).

Refined ego-splitting

We adopt and refine the ego-splitting method (Epasto, Lattanzi ¢ Paes Leme, 2017;
Epasto & Perozzi, 2019). For each node in the original graph, we first extract its ego-graph,
remove the ego, and identify the local clusters. Every cluster in the ego-graph leads to

a new persona node in the persona graph (see Figs. 1A and 1C). For example, if we
consider each connected component as a local community with a connected component
algorithm, node C in the original graph belongs to two non-overlapping clusters {A,B}
and {D,E,F} in its ego-graph. Given these two clusters, in the persona graph, C is split
into C; and C, to represent the two roles in respective clusters. C; and C, inherit the
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Figure 1 Illustration of persona2vec framework. (A) A graph with an overlapping community
structure. (B) Graph embedding of the original graph is obtained first to initialize the persona embed-
dings. (C) Transform the original graph into a persona graph. Every edge in the original graph is
preserved in the persona graph, while new directed persona edges with weight Ak;* are added between
the persona nodes. (D) Graph embedding is applied to the persona graph. (E) The final persona
embedding where each persona node has its own vector representation.

Full-size Kl DOI: 10.7717/peerj-cs.439/fig-1

connections of C from both clusters separately (see Fig. 1C). On the other hand,
node A only belongs to one ego cluster {B,C}, so it does not split into multiple personas.

Any graph clustering algorithm can be employed for splitting a node into personas.
The simplest algorithm is considering each connected component in the ego-network
(sans the ego) as a cluster. This approach is fast and works well on sparse graphs. However,
in dense graphs, ego-networks are more likely to form fewer connected components,
thus other algorithms such as the Louvain method (Blondel et al., 2008), Infomap
(Rosvall & Bergstrom, 2008), and label propagation (Raghavan, Albert ¢ Kumara, 2007)
would be more appropriate.

In previous studies, the personas get disconnected without retaining the information
about their origin, creating isolated components in the splitting process (Epasto,
Lattanzi ¢ Paes Leme, 2017; Epasto & Perozzi, 2019). Because of this disconnectedness,
common embedding methods could not be directly applied to the splitted graph.

A previous study attempted to address this issue by imposing a regularization term in the
cost function to penalize separation of persona nodes originating from the same node
(Epasto & Perozzi, 2019).

Here, instead of adopting the regularization strategy, we add weighted persona edges
between the personas, maintaining the connectedness between them after the splitting
(see Fig. 1C). Because the persona graph stays connected, classical graph algorithms and
graph embedding methods can now be readily applied without any modification. As we
will show later, our strategy achieves both better scalability and better performance.

In the persona graph, we set the weights of the unweighted original edges as 1 and
tune the strength of the connections among personas with \. Persona edges are directed
and weighted, with weight Ak}, where k7 is the out-degree of the persona node after splitting
(see Fig. 1C). Assigning weight proportional to k7 helps the random walker exploring both
the local neighbors and other parts of the graph connected to the other personas regardless
of the out-degree k.
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Imagine node u, which is split into n, personas. Consider one of the personas i with out-
degree k? and persona edges with weight w;. Then the probability p; that an unbiased
random walker at 7 visits neighbors connected with the original edges at the next step is

k°
i 1
k? + ani ( )
If we set constant weight w; = A, then
k° 1
P k) + np\ 1+ My A @
K
which depends on kj. A random-walker would not explore its local neighborhood if
n, > ki, while the opposite happens when n, < k. Instead, assigning the weight
proportional to k7, namely w; = Ak7, removes such bias because
k¢ 1
: (3)

P e e T 1+ mpn

which is independent of k}. Our experiments also show that using the out-degree
yields better performance than assigning the identical weight to each persona edge.
Our algorithm for refined ego-splitting is described in Algorithm 1. Note that it can be
generalized to the directed graphs.

Persona graph embedding

As explained above, any graph embedding algorithm that recognizes edge direction and
weight can be readily applied to the persona graph. Although we use Node2vec as the
embedding method here, other embedding methods can also be employed. We initialize
the persona vectors with the vectors from the original graph before ego-splitting

(see Fig. 1B) to leverage the information from the original graph structure. Persona
nodes that belong to the same node in the original graph are thus initialized with the same
vector. We then execute the embedding algorithm for a small number of epochs to
fine-tune the embedding vectors with the information from the persona graph (see Fig. 1).
Experiments show that usually only one epoch of training is enough.

We find that training the embedding on the persona graphs from scratch fails to
yield comparable results. Instead, initializing the embedding with the original graphs,
i.e., our present method, consistently improves the performance, suggesting that mixing
the structural information from both the original graph and the persona graph is crucial.
Our full algorithm is described in Algorithm 2.

Complexity

Space complexity

The persona graph is usually larger than the original graph, but not too large. Node u with
degree k, may be split into at most k, personas. In the worst case, the number of nodes in
the persona graph can reach O(|E|). But, in practice, only a subset of nodes split into
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Algorithm 1 Refined ego-splitting for generating the persona graph. Case of the undirected graph.
Input: Original graph G(V, E); weight parameter \; non-overlapping local clustering algorithm ¢
Output: Persona graph Gp(Vp, Ep); node to personas mapping V2P; persona to local cluster mapping
pP2C
1: function REFEGOSPLIT(G(V, E), \, €)

2 for each v, € V do

3 P, — €(v,) > find local clusters of v,
4 for each p € P, do

5 Create v,, and add to Gp, V2P(v,) > create persona nodes for local clusters
6: P2C(v,) < p

7 for each edge (v;, v)) in E do

8 w < weight of edge

9 for each persona node v, in V2P(v;) do

10: for each persona node v}, in V2P(v;) do

11: if v; € P2C(vp,) and v; € P2C(v,) then

12: Add original edges (vp, v},, w), (v},, Vo w) to Ep

13:  k, < out-degree sequence after adding original edges

14: for each v, € V do

15: for each pair (v;, v)) in V2P(v,) do

16: Add persona edges (v;, vj, k;° x A), (v}, v;, k° X ) to Ep
17: return Gp(Vp, Ep), V2P, P2C

personas, and the number of personas rarely reaches the upper bound. If we look at the
persona edges, for a node u with degree k,, at most O(k?) new persona edges may be
added. Thus, the whole persona graph has at most O(|V| x k2__) or O(|V]*) (" kyax < |V])
extra persona edges. If graph’s degree distribution follows a power-law distribution

P(k) ~ k7Y, then ko ~ |V]YY™". Hence, it could be O(|V]Y*"Y™") and it is between O(|V|?)
and O(|V]®) (~ 2 < y < 3 in general). However, real graph tends to be sparse and k; < |V].
If we further assume k; < \/|E| holds for every node, then Z‘nvzll k2 < EL‘Ql ko\/|E| =
2|E|\/|E|. Under this assumption, the upper bound becomes O(|E|*"%). Similarly, with

v=1) " which is between

the scale-free condition, the upper bound could be O(|E||V|
O(|E||V]""*) and O(|E||V]). Again, in practice, the number of persona edges is much smaller
than this upper bound. To illustrate, we list the number of nodes and persona edges in

the persona graph for the graphs we use in this paper in Table 1. All considered, the extra

nodes and edges do not bring too much space complexity burden in practice.

Time complexity

Assessing the time complexity requires consideration of the two steps: ego-splitting and
embedding. The ego-splitting algorithm has complexity of O(|E \3/ >+ /|E[T(JE|)) in the
worst case, where |E| is the number of edges in the original graph and T(|E|) is the
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Algorithm 2 persona2vec. Our method for generating persona node embeddings.
Input:
G(V,E), Original graph
d, embedding dimension
Yp» number of walks per node for base embedding
tp, random walk length for base embedding
wp, window size for base embedding
Yp» number of walks per node for persona embedding
tp» random walk length for persona embedding
Wy, window size for persona embedding
o, learning rate
REFEGOSPLIT, refined ego-splitting method
V2P, node to personas mapping
EMBEDDINGFUNC, a graph embedding method e.g. DeepWalk, Node2vec
Output:
®,, a Np x d matrix with d-dimensional vector representations for all Np persona nodes
1: function PERSONAVEC(G, d, Yy, t, Wp» 8p» Ly Wy REFEGOSPLIT, EMBEDDINGFUNC, )
Gp, V2P « REFEGOSPLIT(G)
®; <« EMBEDDINGFUNC(G, d, Y, tp, Wp, )

for each v, € V do

P, (vp) = Oi(vo)

®g, < EMBEDDINGFUNC(G,, Yp» £ Wps a0, ;)

P

2
3
4
5: for each persona node v, in V2P(v,) do
6
7
8

return $g,

Table 1 Descriptive statistics of the graphs used in the evaluation. We report the number of nodes | V],
number of edges |E|, number of nodes in the persona graph |V,|, the ratio of |V,| over |V|, number of
persona edges |E,| added in ego-splitting, and the ratio of |E,| over |[E*?| which is the upper bound of
space complexity.

Dataset Type 4 |E| \A [Vo|/ IV |Ep | |E,/E*3|
PPI Undirected 3,863 38,705 16,734 4.34 132,932 0.0175
ca-HepTh Undirected 9,877 25,998 16,071 1.86 33,524 0.0800
ca-AstroPh Undirected 17,903 197,301 25,706 1.44 29,102 0.0003
Wiki-vote Directed 7,066 103,633 21,467 3.04 118,020 0.0035
Soc-epinions Directed 75,877 508,836 220,332 2.90 3,550,594 0.0098

complexity of detecting the ego clusters in the graph with |E| edges (Epasto, Lattanzi ¢
Paes Leme, 2017). The embedding on the persona graph, which dominates the whole
embedding procedure, has complexity O(|V,|y twd(1 + log(|V,|))) which is time
complexity of Node2vec, where |V,| is the number of nodes, y is the number of random
walkers, d is the embedding dimension, and w is the window size (Chen et al., 2018).
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Figure 2 Comparison of the the number of persona edges |E,| to the practical upper bound |E[*”%.

Full-size 4] DOT: 10.7717/peerj-cs.439/fig-2

The final complexity is O(|E|** 4 \/[E[T(|E|)) 4+ O(|V|ytwd(1 + log(|V]))).
Removing the constant factors and assuming close-to-linear local community detection
algorithm, the whole process has time complexity of O(|E[*’?) with space complexity of
O(|E*”®) if k; < +/|E| holds. Complexity can be increased depending on the clustering
algorithms on the ego-network.

To test the validity of our assumptions, we sample 1,000 graphs from a public network
repository (Rossi ¢ Ahmed, 2015). We apply the refined ego-splitting with connected
component algorithms on these samples and report the actual number of persona edges
|E,| with respect to the practical upper bound |E|*? in Fig. 2, which shows that the actual
number of persona edges |E,| rarely exceeds the tighter upper bound that we propose

and is usually orders of the magnitude smaller.

Optimization

Any kind of graph embedding method can be considered, for simplicity, we choose the
classical random-walker based embedding method (e.g., Node2Vec, DeepWalk). In the
model (Perozzi, Al-Rfou & Skiena, 2014), the probability of a node v; co-occurring with a
node v; is estimated by

exp(q)g/i ’ (I)Vj)
\%4
> k=1 exp(Ph, - (I)vj)

where @, and ®;, are the ‘input’ and ‘output’ embedding of node i. We use input

p(Vi|Vj) = ) (4)

embedding ® which is known to be more useful and more widely used. Denominator of
Eq. (4) is computationally expensive (Yang et al., 2016; Cao, Lu ¢» Xu, 2016) and there are
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Figure 3 Case Study: Zachary’s Karate club network. (A) The Zachary’s Karate club network with the
force-atlas layout (Zachary, 1977). Nodes are colored by communities detected by the Louvain mod-
ularity method (Blondel et al., 2008). (B) The persona graph. Nodes are colored by k-means clusters
(MacQueen, 1967) from the embedding vectors. Coordinates of the persona nodes come from the 2-D
projection of the embedding with t-SNE (Maaten ¢ Hinton, 2008). Light gray lines represent the persona
edges. (C) The network with 20% of edges (16 edges) removed for the link prediction experiment.
(D) The network with ten predictions with the highest scores from the link prediction experiment. Blue
links represent correctly predicted edges and red edges indicate incorrectly predicted ones.

Full-size K&] DOT: 10.7717/peerj-cs.439/fig-3

two common approximations: hierarchical softmax (Morin ¢ Bengio, 2005) and negative
sampling (Mikolov et al., 2013b). We adopt negative sampling not only because it is
simpler and popular but also because it shows better performance.

CASE STUDY

Before diving into systematic evaluations, we provide two illustrative examples: Zachary’s
Karate club network and a word association network.

Case study: Zachary’s Karate club network

We use Zachary’s Karate club network (Zachary, 1977), a well-known example for the
community detection. Nodes represent members of the Karate club, and edges represent
ties among the members (see Fig. 3A). Although it is often considered to have two

large disjoint communities, smaller overlapping communities can also be seen, highlighted
by nodes such as 1, 3, 28, and 32. In Fig. 3B, we present the persona graph of the network.
persona2vec successfully recognizes these bridge nodes and places their personas in
reasonable locations. Take node 1 for example. It splits into four persona nodes, which
then end up in two different communities. The orange and green communities are clearly
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Figure 4 The word association network, clusters around the word “Newton”. Coordinates of the
words come from the 2-D projection of the embedding vectors with UMAP (McInnes, Healy & Melville,
2018). Word colors correspond to the clusters obtained by k-means clustering (MacQueen, 1967) on the
embedding vectors. Full-size K&l DOT: 10.7717/peerj-cs.439/fig-4

separated as a result. We also show the ten predictions with the highest scores from the link
prediction experiment in Fig. 3D and ensure that the model predicts missing edges well.

Case study: word association network

Word association network captures how people associate words together (free association
task). The dataset was originally assembled from nearly 750,000 responses from over
6,000 peoples. Participants were shown 5,019 words and asked to write down the first word
that sprang in mind and all the word pairs were collected with their frequency as the
weights. This dataset forms a weighted, directed graph of words that captures their
multiple senses. Although it is, in principle, possible to run our method on the original
graph, for simplicity, we convert it into an undirected, unweighted graph by neglecting
weight and direction (Ahn, Bagrow ¢ Lehmann, 2010). In Fig. 4, we show the
persona2vec clusters around the word “Newton”. We use the Louvain method (Blondel
et al., 2008) to split the personas of each word. persona2vec successfully captures
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multiple contexts of the word “Newton”. For instance, the red persona is associated with
“scientists” and “philosopher”, the gray one is linked to the physics, and the yellow one is
associated with “apple” (note that there is a cookie called “(Fig) Newton” in the U.S.).
Furthermore, persona2vec also captures different nuances of the word “law” that are
related to the crime (brown cluster) and the legal concepts (orange cluster).

NUMERICAL EXPERIMENT

Link prediction task

To systematically evaluate the performance and scalability of the persona2vec
framework, we perform a link prediction task using real-world graphs (Grover ¢ Leskovec,
2016; Abu-El-Haija, Perozzi & Al-Rfou, 2017). Link prediction aims to predict missing
edges in a graph with partial information, which is useful for many tasks such as suggesting
new friends on social networks or recommending products. It has been employed as a
primary task to evaluate the performance of unsupervised graph embedding methods
(Abu-El-Haija, Perozzi & Al-Rfou, 2017; Zhang et al., 2018).

We follow the task setup from the literature (Grover ¢ Leskovec, 2016; Abu-El-Haija,
Perozzi & Al-Rfou, 2017). First, the edge set of an input graph is divided equally and
randomly into E,;, and E(.i.. We then refine E,.; using a rejection sampling method based
on the criterion that, even when we remove all edges in E,, the graph should be connected
as a single component. E,;, is used to train the models, and edges in E. are used as
positive examples for the prediction task. Second, a negative edge set E_) of non-existent
random edges with the same size of E,. are generated to provide negative examples for
testing. The performance of a model is measured by its ability to correctly distinguish E.
and E_, after being trained on Ei,i,. We then report ROC-AUC.

Datasets

To facilitate the comparison with the state-of-the-art baseline, we use five graph datasets
that are publicly available and previously used (Epasto ¢ Perozzi, 2019; Leskovec ¢ Krevl,
2014). We summarize them as follows.

PPI is a protein-protein interaction graph of Homo sapiens (Stark et al., 2006). Nodes
represent proteins and edges represent physical interactions between the proteins.
ca-HepTh is a scientific collaboration graph. It represents the co-authorship among
researchers from the Theoretical High Energy Physics field, derived from papers on arXiv.
ca-AstropPh is also scientific collaboration graph, but from Astrophysics. wiki-vote is a
voting network, each node is a Wikipedia user and a directed edge from node i to node j
represents that user i voted for user j to become an administrator. soc-epinions is a
voting graph from a general consumer review site Epinions.com, each node is a member,
and a directed edge from node i to node j means that member i trusted member j.

We use the largest connected component of the undirected graphs and the largest
weakly connected component of the directed ones. The statistics of all the graphs are
reported in Table 1.
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Methods

The state-of-the-art method in this link prediction task is SPLITTER (Epasto ¢ Perozzi,
2019), which also models multiple roles. As reported in the paper, it outperforms various
exiting algorithms ranging across non-embedding methods like Jaccard Coefficient,
Common Neighbors, and Adamic-Adar as well as embedding methods like Laplacian
EigenMaps (Belkin ¢» Niyogi, 2002), Node2vec (Grover ¢ Leskovec, 2016), DNGR (Cao,
Lu & Xu, 2016), Asymmetric (Abu-El-Haija, Perozzi ¢» Al-Rfou, 2017) and M-NMF (Wang
et al., 2017).

Given the state-of-the-art performance of SPLITTER, for simplicity, we compare our
framework with SPLITTER using the identical task setup and datasets. In addition, because
our method can be considered as an augmentation of a single-role embedding method,
and because we use Node2vec as the base embedding method, we also employ Node2vec.
We run the link prediction task using the original authors” implementation of Node2vec
and SPLITTER. The parameters are also kept consistent with the original paper.

persona2vec and SPLITTER have multiple representations on each node, which leads
to non-unique similarity estimations between two nodes. Hence, we define the similarity
score of a pair of nodes on persona2vec as the maximum dot-product of embedding
vectors between any pair of their personas. We found that, among experiments with three
aggregation functions min, max, mean, the highest performance is achieved with max,
the same with SPLITTER (Epasto ¢ Perozzi, 2019). For SPLITTER, we use maximum
cosine similarity, following the author’s note in their implementation.

Node2vec (baseline method)

For Node2vec, we set random walk length ¢ = 40, the number of walks per node y = 10,
random walk parameters p = g = 1, the window size w = 5, and the initial learning rate
a = 0.025. In the original paper, they learn an additional logistic regression classifier over
the Hadamard product of the embedding of two nodes for the link prediction. In general,
the logistic regression classifier improves the performance. Here, we report results on
Node2vec with both dot products and the logistic regression classifier.

SPLITTER (baseline method)
For SPLITTER, we use the same parameters in the paper (Epasto ¢ Perozzi, 2019)
and aforementioned Node2vec baseline. We use Node2vec with random walk parameters

p=qg=1

persona2vec (our proposed method)

We set the hyper-parameters of the original graph embedding with ¢, = 40, y, = 10, w;, = 5.
For the persona embedding, we set t, = 80, y, = 5, w, = 2 to better capture the micro-
structure of the persona graph. The size of the total trajectories is determined by the
random walk length ¢ times the number of walks per node y-, so we keep t-y- constant
to roughly preserve the amount of information used in the embedding. For both
embedding stages, we use o = 0.025, and Node2vec with the random walk parameters (p =
q = 1) as the graph embedding function.
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Figure 5 Performance of persona2vec in the link prediction task. We report the link prediction performance for each graphs for (A) PPI,
(B) ca-HepTh, (C) ca-AstroPh, (D) wiki-vote, and (E) SOC-epinions. Number of epochs # is set to 1 in all experiments for persona2vec. Darker
colors represent higher embedding dimensions. The confidence intervals are all within the range of the markers. Given the same number of
dimensions, persona2vec is always on par with or better than SPLITTER. Full-size 4] DOT: 10.7717/peerj-cs.439/fig-5

Table 2 Performance of persona2vec with A = 0.5. All methods use d = 128. Node2vecx refers to
Node2vec with the logistic regression classifier, SPLITTER#* refers to SPLITTER with one epoch, and
persona2vecx refers persona2vec with A = 0.5, our suggested default. Performance gain is perfor-
mance difference between persona2vec* and Node2vec. We omit the standard error which is smaller
than 107>, Bold numbers represent the best performance.

Method PPI ca-HepTH  ca_AstroPh  wiki-vote soc-epinions
Node2vec 0.585 0.825 0.901 0.694 0.547 + 0.007
Node2vec* 0.662 * 0.001 0.848 0.914 0.705 + 0.001 0.767 = 0.002
SPLITTER 0.856 0.903 0.982 0.931 0.961 + 0.001
SPLITTER* 0.853 0.898 0.984 0.931 0.954 + 0.001
persona2vecx* 0.879 0.927 0.985 0.936 0.961

Performace_gain 0.294 0.102 0.084 0.242 0.414 + 0.007

Experiment results

Figure 5 shows the link prediction performance of persona2vec in comparison with the
baselines. Overall, persona2vec yields superior performance across graphs and across a
range of hyperparameter choices. We show that augmenting Node2vec by considering
personas significantly improves the link prediction performance, evinced by the significant
performance gain (see Table 2).

As expected, larger dimensions lead to better performance, although persona2vec
achieves reasonable results even with tiny embedding dimensions like 8 or 16. We also
show how the performance of persona2vec varies with . For undirected graphs, larger
\ is beneficial but the trend saturates quickly. For directed graphs, however, optimal
performance is achieved with smaller values of X. In practice, we suggest starting with
A = 0.5 as a default parameter because the overall variation brought by A is not substantial
and even when the performance increases with A, near-optimal performance can be
achieved at A = 0.5.

When compared with the SPLITTER baseline, persona2vec shows on par or better
performances given the same embedding dimensions across a wide range of \. We also
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Figure 6 Comparison of link prediction performance between persona2vec and SPLITTER with different approximations. We report the link
prediction performance across optimization methods for each graphs for (A) PPI, (B) ca-HepTh, (C) ca-AstroPh, (D) wiki-vote, and (E) SOC-
epinions. HS refers to the hierarchical softmax and NS refers to the negative sampling. The star marker indicates the best link prediction perfor-
mance. Full-size K&l DOTI: 10.7717/peerj-cs.439/fig-6

report the performance summary for persona2vec with A = 0.5 (our suggested default)
compared with the best baselines in Table 2, which shows that persona2vec outperforms
the baseline consistently. Also, we report the performance gain of persona2vec from
Node2vec, because we used Node2vec as the base embedding method and persona2vec
can be considered as an augmentation or fine-tuning of the base Node2vec vectors

with local structural information. As shown, the persona-based fine-tuning significantly
improves the performance.

We also study the effect of different optimization methods, i.e., hierarchical softmax
and negative sampling in Fig. 6. We also find that cosine similarity consistently yields
a better result with hierarchical softmax while dot product yields a better result with
negative sampling regardless of the embedding methods. So, we use cosine similarity
for hierarchical softmax and use dot product for negative sampling. Our experiments
suggest that persona2vec tends to perform better with negative sampling while
SPLITTER works better with hierarchical softmax. Nevertheless, persona2vec yields the
best performance consistently.

In addition to the performance of the link prediction task, we also report the execution
time of persona2vec and SPLITTER to compare their scalability in practice (see Fig. 7).
Note that the reported execution time is from the link-prediction task, with half of the
edges removed from the original graph. SPLITTER runs the embedding procedures for
10 epochs by default in the original implementation, whereas persona2vec only runs
for one epoch. For a fair comparison, we also report the results of SPLITTER with one
epoch of training. When being limited to only one epoch, SPLITTER’s performance slightly
suffers on three graphs while it goes up or stays stable for the other two.
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Nevertheless, persona2vec is more efficient—39 to 58 times faster than SPLITTER
with 10 epochs and five to eight times faster than SPLITTER with one epoch. The most
likely reason behind the drastic difference is the overhead from the extra regularization
term in the cost function of SPLITTER, which persona2vec does not need. In sum,
persona2vec outperforms the previous state-of-the-art method both in terms of
scalability and link prediction performance.

CONCLUSIONS

We present persona2vec, a framework for learning multiple node representations
considering the node’s local structural contexts. persona2vec first performs ego-splitting,
where nodes with multiple non-overlapping local communities in their ego-networks
are replaced with corresponding persona nodes. The persona nodes inherit the edges from
the original graph and remain connected by newly added persona edges, forming the
persona graph. Initialized by the embedding of the original graph, the embedding
algorithm applied to the persona graph yields the final representations. Instead of
assigning only one vector to every node with multiple roles, persona2vec learns a vector
for each of the personas. With extensive link prediction evaluations, we demonstrate
that persona2vec achieves the state-of-the-art performance while being able to scale
better. Moreover, our method is easy to comprehend and implement without losing any
flexibility for incorporating other embedding algorithms, presenting great potential for
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applications. The possible combination with various algorithms provides vast space for
further exploration. For instance, in a multi-layer network, inter-layer coupling connection
can be interpreted as natural persona edges, and persona2vec may be applied to tackle
the multi-layer link prediction problem.

The graph (relational) structure is ubiquitous across many complex systems, including
physical, social, economic, biological, neural, and information systems, and thus
fundamental graph algorithms have far-reaching impacts across many areas of sciences.
Graph embedding, in particular, removes the barrier of translating methods to the special
graph data structure, opening up a powerful way to transfer existing algorithms to the
graphs and relational data. Furthermore, given that it is natural to assume that overlapping
clusters and their heterogeneous functionality exist in most real networks, multi-role
embedding methods may find numerous applications in physical, biological, and social
sciences.
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Data Availability
The following information was supplied regarding data availability:

The prepossessed version of PPI is available at Stanford University: https://snap.
stanford.edu/node2vec/.

Other graphs (ca-AstroPh, ca-HepTh, wiki-Vote, soc-Epinions1) are also available at
the SNAP library:

http://snap.stanford.edu/data/index.html.

Code is available at GitHub:

https://github.com/jisungyoon/persona2vec.
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