
Persona2vec: a flexible multi-role
representations learning framework for
graphs
Jisung Yoon1,2, Kai-Cheng Yang2, Woo-Sung Jung1,3,4 and
Yong-Yeol Ahn2,5,6

1 Department of Industrial and Management Engineering, Pohang University of Science and
Technology, Pohang, Republic of Korea

2Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing,
and Engineering, Indiana University, Bloomington, IN, USA

3 Department of Physics, Pohang University of Science and Technology, Pohang, Republic of
Korea

4 Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
5 Connection Science, Massachusetts Institute of Technology, Cambridge, MA, USA
6 Network Science Institute, Indiana University, Bloomington, IN, USA

ABSTRACT
Graph embedding techniques, which learn low-dimensional representations of a
graph, are achieving state-of-the-art performance in many graph mining tasks.
Most existing embedding algorithms assign a single vector to each node, implicitly
assuming that a single representation is enough to capture all characteristics of
the node. However, across many domains, it is common to observe pervasively
overlapping community structure, where most nodes belong to multiple
communities, playing different roles depending on the contexts. Here, we propose
persona2vec, a graph embedding framework that efficiently learns multiple
representations of nodes based on their structural contexts. Using link prediction-
based evaluation, we show that our framework is significantly faster than the existing
state-of-the-art model while achieving better performance.

Subjects Artificial Intelligence, Data Science, Network Science and Online Social Networks,
Social Computing
Keywords Graph embedding, Overlapping community, Social context, Social network analysis,
Link prediction

INTRODUCTION
Graph embedding maps the nodes in a graph to continuous and dense vectors that capture
relations among the nodes (Perozzi, Al-Rfou & Skiena, 2014; Grover & Leskovec, 2016;
Tang et al., 2015). Resulting node representations allow direct applications of algebraic
operations and common algorithms, facilitating graph mining tasks such as node
classification (Sen et al., 2008; Perozzi, Al-Rfou & Skiena, 2014), community detection
(Fortunato, 2010; Yang et al., 2016), link prediction (Grover & Leskovec, 2016),
visualization (Tang et al., 2015), and computer vision (Xie et al., 2020). Most methods
map each node to a single vector, implicitly assuming that a single representation is
sufficient to capture the full characteristics of a node.

However, nodes often play multiple roles. For instance, people have multiple roles, or
“personas”, across contexts (e.g., professor, employee, and so on) (Ahn, Bagrow &

How to cite this article Yoon J, Yang K-C, Jung W-S, Ahn Y-Y. 2021. Persona2vec: a flexible multi-role representations learning
framework for graphs. PeerJ Comput. Sci. 7:e439 DOI 10.7717/peerj-cs.439

Submitted 24 December 2020
Accepted 22 February 2021
Published 30 March 2021

Corresponding author
Yong-Yeol Ahn, yyahn@iu.edu

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.439

Copyright
2021 Yoon et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.439
mailto:yyahn@�iu.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.439
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Lehmann, 2010; Coscia et al., 2014; Leskovec et al., 2009; Leskovec, Lang &Mahoney, 2010).
Similarly, proteins and other biological elements play multiple functionalities (Palla
et al., 2005; Gavin et al., 2006; Ahn, Bagrow & Lehmann, 2010). Another example is the
polysemy of words when their relations are modeled with graphs; many words possess
multiple meanings differentiated by the contexts (Chen, Liu & Sun, 2014; Li & Jurafsky,
2015; Iacobacci, Pilehvar & Navigli, 2015). Explicit modeling of such multiplicity and
overlapping clusters has been fruitful not only for community detection (Rosvall et al.,
2014; Coscia et al., 2014; Epasto, Lattanzi & Paes Leme, 2017), but also for improving the
quality of embedding (Li & Jurafsky, 2015; Epasto & Perozzi, 2019; Liu et al., 2019). Yet,
with the scarcity of embedding methods embracing this idea, the full potential of this
approach has not been properly explored.

In this paper, we propose persona2vec, a scalable framework that builds on the idea
of ego-splitting (Epasto, Lattanzi & Paes Leme, 2017), the process of identifying local
structural contexts of a node via performing local community detection on the node’s
ego-network. For each detected local community (role), we transform each node into
multiple personas if there are multiple local communities to which the node belongs.
After the split, the original node is replaced by the new persona nodes that inherit the
connection from each local community, producing a new persona graph. Instead of
separating a node’s persona nodes from each other completely (Epasto & Perozzi, 2019),
we add directed, weighted edges between personas to capture their origin. In doing
so, we allow the direct application of the existing graph embedding methods. In addition,
we take an approach of considering persona-based learning as fine-tuning of the base
graph embedding, achieving both efficiency and balance between information from the
original graph and the persona graph. Compared with the previous approach (Epasto &
Perozzi, 2019), our framework is conceptually simpler to understand and practically easier
to implement. Furthermore, it achieves better performance in the link prediction tasks
while being much faster. We also would like to clarify that the primary purpose of persona
splitting is not about obtaining multiple representations, each of which may be suited
for a specific task; it is about teasing out multiple contexts that a single node may possess.
In other words, even with a single task, we argue that learning multiple representations for
some nodes is highly beneficial.

In sum, we would like to highlight that our approach (1) drastically lowers the barrier
for combining existing algorithms with persona splitting, (2) significantly improves the
efficiency of the ego-splitting approach, while (3) consistently excelling the previous
state-of-the-art model in the link prediction task. Our implementation of persona2vec is
publicly available at https://github.com/jisungyoon/persona2vec.

RELATED WORK
In addition to graph embedding, our work is closely related to the research of identifying
overlapping communities in graphs. Various non-embedding methods such as link
clustering (Ahn, Bagrow & Lehmann, 2010; Evans & Lambiotte, 2009), clique percolation
(Palla et al., 2005), and mixed membership stochastic blockmodel (Airoldi et al., 2008)
have been proposed. Another thread of works focuses on using local graph structure to

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 2/20

https://github.com/jisungyoon/persona2vec
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

extract community information (Coscia et al., 2014; Epasto et al., 2015; Epasto, Lattanzi &
Paes Leme, 2017). Specifically, Epasto, Lattanzi & Paes Leme (2017) introduce the
persona graph method for detecting overlapping communities in graphs, leveraging
ego-network partition. The combination of ego-network analysis and graph embedding
methods is still rare. An example is SPLITTER (Epasto & Perozzi, 2019), which we use
as the baseline in this paper. Instead of constraining the relations between personas with a
regularization term, we propose a simpler and more efficient way of adding persona edges
to the graph.

Our work is also related to the word disambiguation problem in a word embedding.
Recently, word embedding techniques (Mikolov et al., 2013a, 2013b; Pennington, Socher &
Manning, 2014) have been extensively applied to various NLP tasks as the vectorized
word representations can effectively capture syntactic and semantic information.
Although some words have multiple senses depending on the context, the original word
embedding methods only assign one vector to each word. Li & Jurafsky (2015) shows that
embedding that is aware of multiple word senses and provides a vector for each specific
sense does improve the performance for some NLP tasks. For this issue, some utilize
the local context information and clustering for identifying word sense (Reisinger &
Mooney, 2010; Wu & Giles, 2015; Neelakantan et al., 2015), some resort to external
lexical database for disambiguation (Rothe & Schütze, 2015; Iacobacci, Pilehvar & Navigli,
2015; Camacho-Collados, Pilehvar & Navigli, 2016; Chen, Liu & Sun, 2014; Jauhar, Dyer &
Hovy, 2015; Pelevina et al., 2017), while some combine topic modeling methods with
embedding (Liu, Qiu & Huang, 2015; Liu et al., 2015; Cheng et al., 2015; Zhang & Zhong,
2016). We adopt the idea of assigning multiple vectors to each node in the graph to
represent different roles as well as exploiting local graph structure for the purpose.

PROPOSED METHOD: PERSONA2VEC
persona2vec creates a persona graph, where some nodes are split into multiple personas.
We then apply a graph embedding algorithm to the persona graph to learn the embeddings
of the personas (see Fig. 1). Let us explain the method formally. Let G = (V, E) be a
graph with a set of nodes V and a set of edges E. |V| and |E| denote the number of nodes
and edges respectively. Let f : v! Rd be the embedding function that maps a node v to a
d-dimensional vector space (d� |V|).

Refined ego-splitting
We adopt and refine the ego-splitting method (Epasto, Lattanzi & Paes Leme, 2017;
Epasto & Perozzi, 2019). For each node in the original graph, we first extract its ego-graph,
remove the ego, and identify the local clusters. Every cluster in the ego-graph leads to
a new persona node in the persona graph (see Figs. 1A and 1C). For example, if we
consider each connected component as a local community with a connected component
algorithm, node C in the original graph belongs to two non-overlapping clusters {A,B}
and {D,E,F} in its ego-graph. Given these two clusters, in the persona graph, C is split
into C1 and C2 to represent the two roles in respective clusters. C1 and C2 inherit the

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 3/20

http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

connections of C from both clusters separately (see Fig. 1C). On the other hand,
node A only belongs to one ego cluster {B,C}, so it does not split into multiple personas.

Any graph clustering algorithm can be employed for splitting a node into personas.
The simplest algorithm is considering each connected component in the ego-network
(sans the ego) as a cluster. This approach is fast and works well on sparse graphs. However,
in dense graphs, ego-networks are more likely to form fewer connected components,
thus other algorithms such as the Louvain method (Blondel et al., 2008), Infomap
(Rosvall & Bergstrom, 2008), and label propagation (Raghavan, Albert & Kumara, 2007)
would be more appropriate.

In previous studies, the personas get disconnected without retaining the information
about their origin, creating isolated components in the splitting process (Epasto,
Lattanzi & Paes Leme, 2017; Epasto & Perozzi, 2019). Because of this disconnectedness,
common embedding methods could not be directly applied to the splitted graph.
A previous study attempted to address this issue by imposing a regularization term in the
cost function to penalize separation of persona nodes originating from the same node
(Epasto & Perozzi, 2019).

Here, instead of adopting the regularization strategy, we add weighted persona edges
between the personas, maintaining the connectedness between them after the splitting
(see Fig. 1C). Because the persona graph stays connected, classical graph algorithms and
graph embedding methods can now be readily applied without any modification. As we
will show later, our strategy achieves both better scalability and better performance.

In the persona graph, we set the weights of the unweighted original edges as 1 and
tune the strength of the connections among personas with λ. Persona edges are directed
and weighted, with weight λkoi, where k

o
i is the out-degree of the persona node after splitting

(see Fig. 1C). Assigning weight proportional to koi helps the random walker exploring both
the local neighbors and other parts of the graph connected to the other personas regardless
of the out-degree koi.

A

B C

D

E F

G

H

(a) Original graph

A

B C1 C2

D

E F1 F2

G

H
Original edge Persona edge

(c) Persona graph
A
B
C1

C2

..
H

(e) Persona embedding

d

10

A
B
C
D
..
H

(b) Base graph embedding

d

8
Graph embedding

Ego-split Initialize

(d) Graph embedding

2λ

3λ 2λ

3λ

Figure 1 Illustration of persona2vec framework. (A) A graph with an overlapping community
structure. (B) Graph embedding of the original graph is obtained first to initialize the persona embed-
dings. (C) Transform the original graph into a persona graph. Every edge in the original graph is
preserved in the persona graph, while new directed persona edges with weight λki

o are added between
the persona nodes. (D) Graph embedding is applied to the persona graph. (E) The final persona
embedding where each persona node has its own vector representation.

Full-size DOI: 10.7717/peerj-cs.439/fig-1

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 4/20

http://dx.doi.org/10.7717/peerj-cs.439/fig-1
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Imagine node u, which is split into np personas. Consider one of the personas i with out-
degree koi and persona edges with weight wi. Then the probability pi that an unbiased
random walker at i visits neighbors connected with the original edges at the next step is

koi
koi þ npwi

: (1)

If we set constant weight wi = λ, then

pi ¼ koi
koi þ np�

¼ 1

1þ np
koi

�
; (2)

which depends on koi. A random-walker would not explore its local neighborhood if
np � koi, while the opposite happens when np � koi. Instead, assigning the weight
proportional to koi, namely wi = λkoi, removes such bias because

pi ¼ koi
koi þ np�koi

¼ 1
1þ np�

; (3)

which is independent of koi. Our experiments also show that using the out-degree
yields better performance than assigning the identical weight to each persona edge.
Our algorithm for refined ego-splitting is described in Algorithm 1. Note that it can be
generalized to the directed graphs.

Persona graph embedding
As explained above, any graph embedding algorithm that recognizes edge direction and
weight can be readily applied to the persona graph. Although we use Node2vec as the
embedding method here, other embedding methods can also be employed. We initialize
the persona vectors with the vectors from the original graph before ego-splitting
(see Fig. 1B) to leverage the information from the original graph structure. Persona
nodes that belong to the same node in the original graph are thus initialized with the same
vector. We then execute the embedding algorithm for a small number of epochs to
fine-tune the embedding vectors with the information from the persona graph (see Fig. 1).
Experiments show that usually only one epoch of training is enough.

We find that training the embedding on the persona graphs from scratch fails to
yield comparable results. Instead, initializing the embedding with the original graphs,
i.e., our present method, consistently improves the performance, suggesting that mixing
the structural information from both the original graph and the persona graph is crucial.
Our full algorithm is described in Algorithm 2.

Complexity
Space complexity
The persona graph is usually larger than the original graph, but not too large. Node u with
degree ku may be split into at most ku personas. In the worst case, the number of nodes in
the persona graph can reach O(|E|). But, in practice, only a subset of nodes split into

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 5/20

http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

personas, and the number of personas rarely reaches the upper bound. If we look at the
persona edges, for a node u with degree ku, at most Oðk2uÞ new persona edges may be
added. Thus, the whole persona graph has at most OðjV j � k2maxÞ or O(|V|3) (∵ kmax ≤ |V|)
extra persona edges. If graph’s degree distribution follows a power-law distribution
P(k) ∼ k−γ, then kmax ∼ |V|1/γ−1. Hence, it could be O(|V|γ+1/γ−1) and it is between O(|V|2)
and O(|V|3) (∼ 2 ≤ γ ≤ 3 in general). However, real graph tends to be sparse and ki� |V|.
If we further assume ki <

ffiffiffiffiffiffijEjp
holds for every node, then

PjVj
n¼1 k

2
n �

PjVj
n¼1 kn

ffiffiffiffiffiffijEjp ¼
2jEj ffiffiffiffiffiffijEjp

. Under this assumption, the upper bound becomes O(|E|3/2). Similarly, with
the scale-free condition, the upper bound could be O(|E||V|1/γ−1), which is between
O(|E||V|1/2) andO(|E||V|). Again, in practice, the number of persona edges is much smaller
than this upper bound. To illustrate, we list the number of nodes and persona edges in
the persona graph for the graphs we use in this paper in Table 1. All considered, the extra
nodes and edges do not bring too much space complexity burden in practice.

Time complexity
Assessing the time complexity requires consideration of the two steps: ego-splitting and
embedding. The ego-splitting algorithm has complexity of OðjEj3=2 þ ffiffiffiffiffiffijEjp

TðjEjÞÞ in the
worst case, where |E| is the number of edges in the original graph and T(|E|) is the

Algorithm 1 Refined ego-splitting for generating the persona graph. Case of the undirected graph.

Input: Original graph G(V, E); weight parameter λ; non-overlapping local clustering algorithm C

Output: Persona graph GP(VP, EP); node to personas mapping V2P; persona to local cluster mapping

P2C

1: function REFEGOSPLIT(G(V, E), λ, C)

2: for each vo ∈ V do

3: Pvo CðvoÞ ⊳ find local clusters of vo

4: for each p ∈ Pvo do

5: Create vp, and add to GP, V2P(vo) ⊳ create persona nodes for local clusters

6: P2C(vp)) p

7: for each edge (vi, vj) in E do

8: w) weight of edge

9: for each persona node vp in V2P(vi) do

10: for each persona node v′p in V2P(vi) do

11: if vi ∈ P2C(v′p) and vj ∈ P2C(vp) then

12: Add original edges (vp, v′p, w), (v′p, vp, w) to EP

13: ko) out-degree sequence after adding original edges

14: for each vo ∈ V do

15: for each pair (vi, vj) in V2P(vo) do

16: Add persona edges (vi, vj, ki
o × λ), (vj, vi, kj

o × λ) to EP

17: return GP(VP, EP), V2P, P2C

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 6/20

http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

complexity of detecting the ego clusters in the graph with |E| edges (Epasto, Lattanzi &
Paes Leme, 2017). The embedding on the persona graph, which dominates the whole
embedding procedure, has complexity O(|Vp|γ twd(1 + log(|Vp|))) which is time
complexity of Node2vec, where |Vp| is the number of nodes, γ is the number of random
walkers, d is the embedding dimension, and w is the window size (Chen et al., 2018).

Algorithm 2 persona2vec. Our method for generating persona node embeddings.

Input:

G(V,E), Original graph

d, embedding dimension

γb, number of walks per node for base embedding

tb, random walk length for base embedding

wb, window size for base embedding

γp, number of walks per node for persona embedding

tp, random walk length for persona embedding

wp, window size for persona embedding

a, learning rate

REFEGOSPLIT, refined ego-splitting method

V2P, node to personas mapping

EMBEDDINGFUNC, a graph embedding method e.g. DeepWalk, Node2vec

Output:

�GP , a NP × d matrix with d-dimensional vector representations for all NP persona nodes

1: function PERSONA2VEC(G, d, γb, tb, wb, gp, tp, wp, REFEGOSPLIT, EMBEDDINGFUNC, a)

2: GP, V2P) REFEGOSPLIT(G)

3: ΦG) EMBEDDINGFUNC(G, d, γb, tb, wb, a)

4: for each vo ∈ V do

5: for each persona node vp in V2P(vo) do

6: �GP (vp) = ΦG(vo)

7: �GP) EMBEDDINGFUNC(Gp, γp, tp, wp, a, �GP)

8: return �GP

Table 1 Descriptive statistics of the graphs used in the evaluation.We report the number of nodes |V|,
number of edges |E|, number of nodes in the persona graph |Vp|, the ratio of |Vp| over |V|, number of
persona edges |Ep| added in ego-splitting, and the ratio of |Ep| over |E

3/2| which is the upper bound of
space complexity.

Dataset Type Vj j Ej j Vp

�� �� Vp

�� ��= Vj j Ep
�� �� Ep=E2=3

�� ��

PPI Undirected 3,863 38,705 16,734 4.34 132,932 0.0175

ca-HepTh Undirected 9,877 25,998 16,071 1.86 33,524 0.0800

ca-AstroPh Undirected 17,903 197,301 25,706 1.44 29,102 0.0003

Wiki-vote Directed 7,066 103,633 21,467 3.04 118,020 0.0035

Soc-epinions Directed 75,877 508,836 220,332 2.90 3,550,594 0.0098

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 7/20

http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

The final complexity is OðjEj3=2 þ ffiffiffiffiffiffijEjp
TðjEjÞÞ þ OðjV jctwdð1þ logðjV jÞÞÞ.

Removing the constant factors and assuming close-to-linear local community detection
algorithm, the whole process has time complexity of O(|E|3/2) with space complexity of
O(|E|3/2) if ki <

ffiffiffiffiffiffijEjp
holds. Complexity can be increased depending on the clustering

algorithms on the ego-network.
To test the validity of our assumptions, we sample 1,000 graphs from a public network

repository (Rossi & Ahmed, 2015). We apply the refined ego-splitting with connected
component algorithms on these samples and report the actual number of persona edges
|Ep| with respect to the practical upper bound |E|3/2 in Fig. 2, which shows that the actual
number of persona edges |Ep| rarely exceeds the tighter upper bound that we propose
and is usually orders of the magnitude smaller.

Optimization
Any kind of graph embedding method can be considered, for simplicity, we choose the
classical random-walker based embedding method (e.g., Node2Vec, DeepWalk). In the
model (Perozzi, Al-Rfou & Skiena, 2014), the probability of a node vi co-occurring with a
node vj is estimated by

pðvijvjÞ ¼
expð�0vi � �vjÞPV
k¼1 expð�0vk � �vjÞ

; (4)

where �vi and �′vi are the ‘input’ and ‘output’ embedding of node i. We use input
embedding � which is known to be more useful and more widely used. Denominator of
Eq. (4) is computationally expensive (Yang et al., 2016; Cao, Lu & Xu, 2016) and there are

Figure 2 Comparison of the the number of persona edges |Ep| to the practical upper bound |E|3/2.
Full-size DOI: 10.7717/peerj-cs.439/fig-2

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 8/20

http://dx.doi.org/10.7717/peerj-cs.439/fig-2
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

two common approximations: hierarchical softmax (Morin & Bengio, 2005) and negative
sampling (Mikolov et al., 2013b). We adopt negative sampling not only because it is
simpler and popular but also because it shows better performance.

CASE STUDY
Before diving into systematic evaluations, we provide two illustrative examples: Zachary’s
Karate club network and a word association network.

Case study: Zachary’s Karate club network
We use Zachary’s Karate club network (Zachary, 1977), a well-known example for the
community detection. Nodes represent members of the Karate club, and edges represent
ties among the members (see Fig. 3A). Although it is often considered to have two
large disjoint communities, smaller overlapping communities can also be seen, highlighted
by nodes such as 1, 3, 28, and 32. In Fig. 3B, we present the persona graph of the network.
persona2vec successfully recognizes these bridge nodes and places their personas in
reasonable locations. Take node 1 for example. It splits into four persona nodes, which
then end up in two different communities. The orange and green communities are clearly

a b

c d

Figure 3 Case Study: Zachary’s Karate club network. (A) The Zachary’s Karate club network with the
force-atlas layout (Zachary, 1977). Nodes are colored by communities detected by the Louvain mod-
ularity method (Blondel et al., 2008). (B) The persona graph. Nodes are colored by k-means clusters
(MacQueen, 1967) from the embedding vectors. Coordinates of the persona nodes come from the 2-D
projection of the embedding with t-SNE (Maaten & Hinton, 2008). Light gray lines represent the persona
edges. (C) The network with 20% of edges (16 edges) removed for the link prediction experiment.
(D) The network with ten predictions with the highest scores from the link prediction experiment. Blue
links represent correctly predicted edges and red edges indicate incorrectly predicted ones.

Full-size DOI: 10.7717/peerj-cs.439/fig-3

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 9/20

http://dx.doi.org/10.7717/peerj-cs.439/fig-3
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

separated as a result. We also show the ten predictions with the highest scores from the link
prediction experiment in Fig. 3D and ensure that the model predicts missing edges well.

Case study: word association network
Word association network captures how people associate words together (free association
task). The dataset was originally assembled from nearly 750,000 responses from over
6,000 peoples. Participants were shown 5,019 words and asked to write down the first word
that sprang in mind and all the word pairs were collected with their frequency as the
weights. This dataset forms a weighted, directed graph of words that captures their
multiple senses. Although it is, in principle, possible to run our method on the original
graph, for simplicity, we convert it into an undirected, unweighted graph by neglecting
weight and direction (Ahn, Bagrow & Lehmann, 2010). In Fig. 4, we show the
persona2vec clusters around the word “Newton”. We use the Louvain method (Blondel
et al., 2008) to split the personas of each word. persona2vec successfully captures

Figure 4 The word association network, clusters around the word “Newton”. Coordinates of the
words come from the 2-D projection of the embedding vectors with UMAP (McInnes, Healy & Melville,
2018). Word colors correspond to the clusters obtained by k-means clustering (MacQueen, 1967) on the
embedding vectors. Full-size DOI: 10.7717/peerj-cs.439/fig-4

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 10/20

http://dx.doi.org/10.7717/peerj-cs.439/fig-4
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

multiple contexts of the word “Newton”. For instance, the red persona is associated with
“scientists” and “philosopher”, the gray one is linked to the physics, and the yellow one is
associated with “apple” (note that there is a cookie called “(Fig) Newton” in the U.S.).
Furthermore, persona2vec also captures different nuances of the word “law” that are
related to the crime (brown cluster) and the legal concepts (orange cluster).

NUMERICAL EXPERIMENT
Link prediction task
To systematically evaluate the performance and scalability of the persona2vec
framework, we perform a link prediction task using real-world graphs (Grover & Leskovec,
2016; Abu-El-Haija, Perozzi & Al-Rfou, 2017). Link prediction aims to predict missing
edges in a graph with partial information, which is useful for many tasks such as suggesting
new friends on social networks or recommending products. It has been employed as a
primary task to evaluate the performance of unsupervised graph embedding methods
(Abu-El-Haija, Perozzi & Al-Rfou, 2017; Zhang et al., 2018).

We follow the task setup from the literature (Grover & Leskovec, 2016; Abu-El-Haija,
Perozzi & Al-Rfou, 2017). First, the edge set of an input graph is divided equally and
randomly into Etrain and Etest. We then refine Etest using a rejection sampling method based
on the criterion that, even when we remove all edges in Etest, the graph should be connected
as a single component. Etrain is used to train the models, and edges in Etest are used as
positive examples for the prediction task. Second, a negative edge set E(−) of non-existent
random edges with the same size of Etest are generated to provide negative examples for
testing. The performance of a model is measured by its ability to correctly distinguish Etest
and E(−) after being trained on Etrain. We then report ROC-AUC.

Datasets
To facilitate the comparison with the state-of-the-art baseline, we use five graph datasets
that are publicly available and previously used (Epasto & Perozzi, 2019; Leskovec & Krevl,
2014). We summarize them as follows.

PPI is a protein-protein interaction graph of Homo sapiens (Stark et al., 2006). Nodes
represent proteins and edges represent physical interactions between the proteins.
ca-HepTh is a scientific collaboration graph. It represents the co-authorship among
researchers from the Theoretical High Energy Physics field, derived from papers on arXiv.
ca-AstropPh is also scientific collaboration graph, but from Astrophysics. wiki-vote is a
voting network, each node is a Wikipedia user and a directed edge from node i to node j
represents that user i voted for user j to become an administrator. soc-epinions is a
voting graph from a general consumer review site Epinions.com, each node is a member,
and a directed edge from node i to node j means that member i trusted member j.

We use the largest connected component of the undirected graphs and the largest
weakly connected component of the directed ones. The statistics of all the graphs are
reported in Table 1.

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 11/20

http://Epinions.com
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Methods
The state-of-the-art method in this link prediction task is SPLITTER (Epasto & Perozzi,
2019), which also models multiple roles. As reported in the paper, it outperforms various
exiting algorithms ranging across non-embedding methods like Jaccard Coefficient,
Common Neighbors, and Adamic-Adar as well as embedding methods like Laplacian
EigenMaps (Belkin & Niyogi, 2002), Node2vec (Grover & Leskovec, 2016), DNGR (Cao,
Lu & Xu, 2016), Asymmetric (Abu-El-Haija, Perozzi & Al-Rfou, 2017) and M-NMF (Wang
et al., 2017).

Given the state-of-the-art performance of SPLITTER, for simplicity, we compare our
framework with SPLITTER using the identical task setup and datasets. In addition, because
our method can be considered as an augmentation of a single-role embedding method,
and because we use Node2vec as the base embedding method, we also employ Node2vec.
We run the link prediction task using the original authors’ implementation of Node2vec
and SPLITTER. The parameters are also kept consistent with the original paper.

persona2vec and SPLITTER have multiple representations on each node, which leads
to non-unique similarity estimations between two nodes. Hence, we define the similarity
score of a pair of nodes on persona2vec as the maximum dot-product of embedding
vectors between any pair of their personas. We found that, among experiments with three
aggregation functions min, max, mean, the highest performance is achieved with max,
the same with SPLITTER (Epasto & Perozzi, 2019). For SPLITTER, we use maximum
cosine similarity, following the author’s note in their implementation.

Node2vec (baseline method)
For Node2vec, we set random walk length t = 40, the number of walks per node γ = 10,
random walk parameters p = q = 1, the window size w = 5, and the initial learning rate
a = 0.025. In the original paper, they learn an additional logistic regression classifier over
the Hadamard product of the embedding of two nodes for the link prediction. In general,
the logistic regression classifier improves the performance. Here, we report results on
Node2vec with both dot products and the logistic regression classifier.

SPLITTER (baseline method)
For SPLITTER, we use the same parameters in the paper (Epasto & Perozzi, 2019)
and aforementioned Node2vec baseline. We use Node2vec with random walk parameters
p = q = 1.

persona2vec (our proposed method)
We set the hyper-parameters of the original graph embedding with tb = 40, γb = 10, wb = 5.
For the persona embedding, we set tp = 80, γp = 5, wp = 2 to better capture the micro-
structure of the persona graph. The size of the total trajectories is determined by the
random walk length t� times the number of walks per node γ�, so we keep t�γ� constant
to roughly preserve the amount of information used in the embedding. For both
embedding stages, we use a = 0.025, and Node2vec with the random walk parameters (p =
q = 1) as the graph embedding function.

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 12/20

http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Experiment results
Figure 5 shows the link prediction performance of persona2vec in comparison with the
baselines. Overall, persona2vec yields superior performance across graphs and across a
range of hyperparameter choices. We show that augmenting Node2vec by considering
personas significantly improves the link prediction performance, evinced by the significant
performance gain (see Table 2).

As expected, larger dimensions lead to better performance, although persona2vec

achieves reasonable results even with tiny embedding dimensions like 8 or 16. We also
show how the performance of persona2vec varies with λ. For undirected graphs, larger
λ is beneficial but the trend saturates quickly. For directed graphs, however, optimal
performance is achieved with smaller values of λ. In practice, we suggest starting with
λ = 0.5 as a default parameter because the overall variation brought by λ is not substantial
and even when the performance increases with λ, near-optimal performance can be
achieved at λ = 0.5.

When compared with the SPLITTER baseline, persona2vec shows on par or better
performances given the same embedding dimensions across a wide range of λ. We also

a b c d e

Figure 5 Performance of persona2vec in the link prediction task. We report the link prediction performance for each graphs for (A) PPI,
(B) ca-HepTh, (C) ca-AstroPh, (D) wiki-vote, and (E) SOC-epinions. Number of epochs n is set to 1 in all experiments for persona2vec. Darker
colors represent higher embedding dimensions. The confidence intervals are all within the range of the markers. Given the same number of
dimensions, persona2vec is always on par with or better than SPLITTER. Full-size DOI: 10.7717/peerj-cs.439/fig-5

Table 2 Performance of persona2vec with λ = 0.5. All methods use d = 128. Node2vec* refers to
Node2vec with the logistic regression classifier, SPLITTER* refers to SPLITTER with one epoch, and
persona2vec* refers persona2vec with λ = 0.5, our suggested default. Performance gain is perfor-
mance difference between persona2vec* and Node2vec. We omit the standard error which is smaller
than 10−3. Bold numbers represent the best performance.

Method PPI ca-HepTH ca_AstroPh wiki-vote soc-epinions

Node2vec 0.585 0.825 0.901 0.694 0.547 ± 0.007

Node2vec* 0.662 ± 0.001 0.848 0.914 0.705 ± 0.001 0.767 ± 0.002

SPLITTER 0.856 0.903 0.982 0.931 0.961 ± 0.001

SPLITTER* 0.853 0.898 0.984 0.931 0.954 ± 0.001

persona2vec* 0.879 0.927 0.985 0.936 0.961

Performace_gain 0.294 0.102 0.084 0.242 0.414 ± 0.007

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 13/20

http://dx.doi.org/10.7717/peerj-cs.439/fig-5
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

report the performance summary for persona2vec with λ = 0.5 (our suggested default)
compared with the best baselines in Table 2, which shows that persona2vec outperforms
the baseline consistently. Also, we report the performance gain of persona2vec from
Node2vec, because we used Node2vec as the base embedding method and persona2vec

can be considered as an augmentation or fine-tuning of the base Node2vec vectors
with local structural information. As shown, the persona-based fine-tuning significantly
improves the performance.

We also study the effect of different optimization methods, i.e., hierarchical softmax
and negative sampling in Fig. 6. We also find that cosine similarity consistently yields
a better result with hierarchical softmax while dot product yields a better result with
negative sampling regardless of the embedding methods. So, we use cosine similarity
for hierarchical softmax and use dot product for negative sampling. Our experiments
suggest that persona2vec tends to perform better with negative sampling while
SPLITTER works better with hierarchical softmax. Nevertheless, persona2vec yields the
best performance consistently.

In addition to the performance of the link prediction task, we also report the execution
time of persona2vec and SPLITTER to compare their scalability in practice (see Fig. 7).
Note that the reported execution time is from the link-prediction task, with half of the
edges removed from the original graph. SPLITTER runs the embedding procedures for
10 epochs by default in the original implementation, whereas persona2vec only runs
for one epoch. For a fair comparison, we also report the results of SPLITTER with one
epoch of training. When being limited to only one epoch, SPLITTER’s performance slightly
suffers on three graphs while it goes up or stays stable for the other two.

undirected directed
a b c d e

Figure 6 Comparison of link prediction performance between persona2vec and SPLITTER with different approximations.We report the link
prediction performance across optimization methods for each graphs for (A) PPI, (B) ca-HepTh, (C) ca-AstroPh, (D) wiki-vote, and (E) SOC-
epinions. HS refers to the hierarchical softmax and NS refers to the negative sampling. The star marker indicates the best link prediction perfor-
mance. Full-size DOI: 10.7717/peerj-cs.439/fig-6

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 14/20

http://dx.doi.org/10.7717/peerj-cs.439/fig-6
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Nevertheless, persona2vec is more efficient—39 to 58 times faster than SPLITTER

with 10 epochs and five to eight times faster than SPLITTER with one epoch. The most
likely reason behind the drastic difference is the overhead from the extra regularization
term in the cost function of SPLITTER, which persona2vec does not need. In sum,
persona2vec outperforms the previous state-of-the-art method both in terms of
scalability and link prediction performance.

CONCLUSIONS
We present persona2vec, a framework for learning multiple node representations
considering the node’s local structural contexts. persona2vec first performs ego-splitting,
where nodes with multiple non-overlapping local communities in their ego-networks
are replaced with corresponding persona nodes. The persona nodes inherit the edges from
the original graph and remain connected by newly added persona edges, forming the
persona graph. Initialized by the embedding of the original graph, the embedding
algorithm applied to the persona graph yields the final representations. Instead of
assigning only one vector to every node with multiple roles, persona2vec learns a vector
for each of the personas. With extensive link prediction evaluations, we demonstrate
that persona2vec achieves the state-of-the-art performance while being able to scale
better. Moreover, our method is easy to comprehend and implement without losing any
flexibility for incorporating other embedding algorithms, presenting great potential for

Figure 7 Comparison of elapsed time between persona2vec and SPLITTER. Speed gains by per-

sona2vec are shown. Full-size DOI: 10.7717/peerj-cs.439/fig-7

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 15/20

http://dx.doi.org/10.7717/peerj-cs.439/fig-7
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

applications. The possible combination with various algorithms provides vast space for
further exploration. For instance, in a multi-layer network, inter-layer coupling connection
can be interpreted as natural persona edges, and persona2vec may be applied to tackle
the multi-layer link prediction problem.

The graph (relational) structure is ubiquitous across many complex systems, including
physical, social, economic, biological, neural, and information systems, and thus
fundamental graph algorithms have far-reaching impacts across many areas of sciences.
Graph embedding, in particular, removes the barrier of translating methods to the special
graph data structure, opening up a powerful way to transfer existing algorithms to the
graphs and relational data. Furthermore, given that it is natural to assume that overlapping
clusters and their heterogeneous functionality exist in most real networks, multi-role
embedding methods may find numerous applications in physical, biological, and social
sciences.

ACKNOWLEDGEMENTS
For their comments, we thank Sadamori Kojaku, Alessandro Flammini, Filippo Menczer,
Xiaoran Yan, Filipi Nascimento Silva, and Minwoo Ahn.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by the Air Force Office of Scientific Research under award number
FA9550-191-0391. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Air Force Office of Scientific Research: FA9550-191-0391.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Jisung Yoon conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
� Kai-Cheng Yang conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.
� Woo-Sung Jung conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.
� Yong-Yeol Ahn conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 16/20

http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The prepossessed version of PPI is available at Stanford University: https://snap.
stanford.edu/node2vec/.

Other graphs (ca-AstroPh, ca-HepTh, wiki-Vote, soc-Epinions1) are also available at
the SNAP library:

http://snap.stanford.edu/data/index.html.
Code is available at GitHub:
https://github.com/jisungyoon/persona2vec.

REFERENCES
Abu-El-Haija S, Perozzi B, Al-Rfou R. 2017. Learning edge representations via low-rank

asymmetric projections. In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM ’17. New York: ACM, 1787–1796.

Ahn Y-Y, Bagrow JP, Lehmann S. 2010. Link communities reveal multiscale complexity in
networks. Nature 466(7307):761–764 DOI 10.1038/nature09182.

Airoldi EM, Blei DM, Fienberg SE, Xing EP. 2008. Mixed membership stochastic blockmodels.
Journal of Machine Learning Research 9(September):1981–2014.

Belkin M, Niyogi P. 2002. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In: Proceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic. Cambridge: MIT Press, 585–591.

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10):P10008
DOI 10.1088/1742-5468/2008/10/P10008.

Camacho-Collados J, Pilehvar MT, Navigli R. 2016. Nasari: integrating explicit knowledge and
corpus statistics for a multilingual representation of concepts and entities. Artificial Intelligence
240(1):36–64 DOI 10.1016/j.artint.2016.07.005.

Cao S, Lu W, Xu Q. 2016. Deep neural networks for learning graph representations. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI Press, 1145–1152.

Chen H, Perozzi B, Hu Y, Skiena S. 2018.Harp: hierarchical representation learning for networks.
In: Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press.

Chen X, Liu Z, Sun M. 2014. A unified model for word sense representation and disambiguation.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 1025–1035.

Cheng J, Wang Z, Wen J-R, Yan J, Chen Z. 2015. Contextual text understanding in distributional
semantic space. In: Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management. ACM, 133–142.

Coscia M, Rossetti G, Giannotti F, Pedreschi D. 2014. Uncovering hierarchical and overlapping
communities with a local-first approach. ACM Transactions on Knowledge Discovery from Data
9(1):6:1–6:27 DOI 10.1145/2629511.

Epasto A, Lattanzi S, Mirrokni V, Sebe IO, Taei A, Verma S. 2015. Ego-net community mining
applied to friend suggestion. Proceedings of the VLDB Endowment 9(4):324–335
DOI 10.14778/2856318.2856327.

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 17/20

https://snap.stanford.edu/node2vec/
https://snap.stanford.edu/node2vec/
http://snap.stanford.edu/data/index.html
https://github.com/jisungyoon/persona2vec
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1016/j.artint.2016.07.005
http://dx.doi.org/10.1145/2629511
http://dx.doi.org/10.14778/2856318.2856327
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Epasto A, Lattanzi S, Paes Leme R. 2017. Ego-splitting framework: From non-overlapping to
overlapping clusters. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17. New York: ACM, 145–154.

Epasto A, Perozzi B. 2019. Is a single embedding enough? Learning node representations
that capture multiple social contexts. In: The World Wide Web Conference. New York: ACM,
394–404.

Evans TS, Lambiotte R. 2009. Line graphs, link partitions, and overlapping communities. Physical
Review E 80(1):016105 DOI 10.1103/PhysRevE.80.016105.

Fortunato S. 2010. Community detection in graphs. Physics Reports 486(3–5):75–174
DOI 10.1016/j.physrep.2009.11.002.

Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S,
Dümpelfeld B, Edelmann A, Heurtier M-A, Hoffman V, Hoefert C, Klein K, Hudak M,
Michon A-M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T,
Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G.
2006. Proteome survey reveals modularity of the yeast cell machinery. Nature
440(7084):631–636 DOI 10.1038/nature04532.

Grover A, Leskovec J. 2016.Node2vec: scalable feature learning for networks. In: Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16. New York: ACM, 855–864.

Iacobacci I, Pilehvar MT, Navigli R. 2015. Sensembed: learning sense embeddings for word and
relational similarity. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics,
95–105.

Jauhar SK, Dyer C, Hovy E. 2015. Ontologically grounded multi-sense representation learning for
semantic vector space models. In: Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies.
Stroudsburg: Association for Computational Linguistics, 683–693.

Leskovec J, Krevl A. 2014. SNAP datasets: Stanford large network dataset collection. Available at
http://snap.stanford.edu/data.

Leskovec J, Lang KJ, Dasgupta A, Mahoney MW. 2009. Community structure in large networks:
natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics
6(1):29–123 DOI 10.1080/15427951.2009.10129177.

Leskovec J, Lang KJ, Mahoney M. 2010. Empirical comparison of algorithms for network
community detection. In: Proceedings of the 19th International Conference on World Wide Web,
WWW ’10. New York: ACM, 631–640.

Li J, Jurafsky D. 2015. Do multi-sense embeddings improve natural language understanding?
arXiv. Available at http://arxiv.org/abs/1506.01070.

Liu N, Tan Q, Li Y, Yang H, Zhou J, Hu X. 2019. Is a single vector enough? exploring node
polysemy for network embedding. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. New York: Association for Computing
Machinery, 932–940.

Liu P, Qiu X, Huang X. 2015. Learning context-sensitive word embeddings with neural tensor
skip-gram model. In: Twenty-Fourth International Joint Conference on Artificial Intelligence.
Palo Alto: AAAI Press.

Liu Y, Liu Z, Chua T-S, Sun M. 2015. Topical word embeddings. In: Twenty-Ninth AAAI
Conference on Artificial Intelligence, 25–30 January 2015, Austin Texas, USA.

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 18/20

http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1038/nature04532
http://snap.stanford.edu/data
http://dx.doi.org/10.1080/15427951.2009.10129177
http://arxiv.org/abs/1506.01070
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Maaten Lv d, Hinton G. 2008. Visualizing data using t-sne. Journal of Machine Learning Research
9(November):2579–2605.

MacQueen J. 1967. Some methods for classification and analysis of multivariate observations. In:
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Oakland, CA, USA. Vol. 1. 281–297.

McInnes L, Healy J, Melville J. 2018. Umap: uniform manifold approximation and projection for
dimension reduction. Available at https://arxiv.org/abs/1802.03426.

Mikolov T, Chen K, Corrado G, Dean J. 2013a. Efficient estimation of word representations in
vector space. Available at https://arxiv.org/abs/1301.3781.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. 2013b. Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information Processing
Systems. 3111–3119.

Morin F, Bengio Y. 2005. Hierarchical probabilistic neural network language model. In: Artificial
Intelligence and Statistics (AISTATS’05). Vol. 5. 246–252.

Neelakantan A, Shankar J, Passos A, McCallum A. 2015. Efficient non-parametric estimation of
multiple embeddings per word in vector space. arXiv. Available at https://arxiv.org/abs/1504.
06654.

Palla G, Derényi I, Farkas I, Vicsek T. 2005. Uncovering the overlapping community structure of
complex networks in nature and society. Nature 435(7043):814–818 DOI 10.1038/nature03607.

Pelevina M, Arefyev N, Biemann C, Panchenko A. 2017. Making sense of word embeddings.
Available at https://arxiv.org/abs/1708.03390.

Pennington J, Socher R, Manning C. 2014. Glove: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 1532–1543.

Perozzi B, Al-Rfou R, Skiena S. 2014. Deepwalk: online learning of social representations. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14. New York: ACM, 701–710.

Raghavan UN, Albert R, Kumara S. 2007. Near linear time algorithm to detect community
structures in large-scale networks. Physical Review E 76(3):036106
DOI 10.1103/PhysRevE.76.036106.

Reisinger J, Mooney RJ. 2010.Multi-prototype vector-space models of word meaning. In: Human
Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics. Association for Computational Linguistics, 109–117.

Rossi RA, Ahmed NK. 2015. The network data repository with interactive graph analytics and
visualization. In: AAAI.

Rosvall M, Bergstrom CT. 2008. Maps of random walks on complex networks reveal community
structure. Proceedings of the National Academy of Sciences of the United States of America
105(4):1118–1123 DOI 10.1073/pnas.0706851105.

Rosvall M, Esquivel AV, Lancichinetti A, West JD, Lambiotte R. 2014.Memory in network flows
and its effects on spreading dynamics and community detection. Nature Communications
5(1):4630 DOI 10.1038/ncomms5630.

Rothe S, Schütze H. 2015. Autoextend: extending word embeddings to embeddings for synsets and
lexemes. arXiv. Available at https://arxiv.org/abs/1507.01127.

Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T. 2008. Collective classification in
network data. AI Magazine 29(3):93 DOI 10.1609/aimag.v29i3.2157.

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 19/20

https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1504.06654
https://arxiv.org/abs/1504.06654
http://dx.doi.org/10.1038/nature03607
https://arxiv.org/abs/1708.03390
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1038/ncomms5630
https://arxiv.org/abs/1507.01127
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. 2006. Biogrid: a general
repository for interaction datasets. Nucleic Acids Research 34:D535–D539.

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. 2015. Line: large-scale information network
embedding. In: Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, Republic and Canton of Geneva, Switzerland, International World Wide Web
Conferences Steering Committee. 1067–1077.

Wang X, Cui P, Wang J, Pei J, ZhuW, Yang S. 2017. Community preserving network embedding.
In: Thirty-First AAAI Conference on Artificial Intelligence.

Wu Z, Giles CL. 2015. Sense-aaware semantic analysis: a multi-prototype word representation
model using wikipedia. In: Twenty-Ninth AAAI Conference on Artificial Intelligence.

Xie G-S, Liu L, Zhu F, Zhao F, Zhang Z, Yao Y, Qin J, Shao L. 2020. Region graph embedding
network for zero-shot learning. In: European Conference on Computer Vision. Cham: Springer,
562–580.

Yang L, Cao X, He D, Wang C, Wang X, ZhangW. 2016.Modularity based community detection
with deep learning. In: IJCAI 16. New York: AAAI Press, 2252–2258.

Zachary WW. 1977. An information flow model for conflict and fission in small groups. Journal of
Anthropological Research 33(4):452–473 DOI 10.1086/jar.33.4.3629752.

Zhang H, Zhong G. 2016. Improving short text classification by learning vector representations of
both words and hidden topics. Knowledge-Based Systems 102(1):76–86
DOI 10.1016/j.knosys.2016.03.027.

Zhang Z, Cui P, Wang X, Pei J, Yao X, Zhu W. 2018. Arbitrary-order proximity preserved
network embedding. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. New York: ACM, 2778–2786.

Yoon et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.439 20/20

http://dx.doi.org/10.1086/jar.33.4.3629752
http://dx.doi.org/10.1016/j.knosys.2016.03.027
http://dx.doi.org/10.7717/peerj-cs.439
https://peerj.com/computer-science/

	Persona2vec: a flexible multi-role representations learning framework for graphs
	Introduction
	Related work
	Proposed method: persona2vec
	Case study
	Numerical experiment
	Conclusions
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

